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Abstract

The problem of mistakes in Penrose tilings will be investigated. Specifically,
we will consider the non-locality of any growth process that attempts to avoid
errors in the construction of a tiling of the plane by Penrose rhombs. This
discussion will be framed by considering the one dimensional version of this
problem for Fibonacci Tilings, the aperiodic tilings of the line. These consider-
ations lead to the conclusion that local growth algorithms for correct Penrose
tilings of the plane do not exist.
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Chapter 1
Introduction

1.1 Introduction

The topic of non-periodic tilings has been of great interest to both mathemati-
cians and those outside the discipline who seek to use tilings as a model for
natural processes. Specifically, tilings are an important area of research for sci-
entists studying crystal growth. The discovery of non-periodic tilings of the
plane by Roger Penrose in the seventies raised many questions within the ar-
eas of crystal research. Previous to this important discovery, it was assumed
that crystals could be broken down into unit cells: finite groupings of atoms
that packed together to fill space and create a crystal [Sen95]. For this reason,
tilings of the plane have been used as elementary models of crystals, with
hexagons, triangles, and rhombs (among others) serving to model the unit
cells. Then, in 1984, several materials scientists claimed to have found a crys-
tals exhibiting fivefold rotational symmetry – something previously thought
to be impossible in a crystal [SBC84]. Suddenly, Penrose’s tilings didn’t seem
like merely a mathematical recreation.

Although the fivefold symmetry exhibited by by Penrose tilings seemed
to provide a good 2D model for quasicrystals, there is one significant problem
with this association. That is, the Penrose tiles fail to provide a good model for
the growth of quasicrystals. We have numerous methods to construct Penrose
tilings, but none of them seem to have plausible extensions to the way that
‘nature’ would construct a crystal. More importantly, any attempt to create a
tiling of the plane by adding tiles one at a time will yield mistakes: gaps in
the tiling that cannot be filled with tiles.

1
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This paper will investigate the problem of growth for Penrose tilings.

1.2 Outline

Chapter Two is an introduction to the one-dimensional analogue of Penrose
tilings, Fibonacci tilings. These non-periodic structures share many charac-
teristics of Penrose tilings, and provide a good framework in which to situate
the discussion of Penrose tilings. Their basic structures and properties will
be discussed, and three methods for their generation will be presented. The
chapter concludes with a discussion of forcing and the impossibility of local
rules for their construction.

Chapter Three will follow the format of Chapter Two, with an added di-
mension. The properties of Penrose tiles and several methods for their con-
struction will be discussed.

The fourth Chapter is an analysis of the growth of Fibonacci tilings. Specif-
ically, we will consider the problem of attempting to avoid errors in the tiling,
which involves a non-local decision making procedure.

Chapter Five will be a consideration of these concerns for Penrose tilings.
We will see that there is no local growth algorithm for these tilings, and that
the process of avoiding mistakes is inherently nonlocal.



Chapter 2
Fibonacci tilings

2.1 Introduction to Fibonacci tilings

A Fibonacci tiling is a one dimensional non-periodic structure. In a general
sense, this means that it is a tiling of the line that does not admit any transla-
tions. The tiles are intervals of two lengths, with the ratio of the lengths of the
short and long intervals being 1 : τ , where τ is the golden mean, or 1+

√
5

2 . Note
that Fibonacci tilings of the line are alternately known as Musical Sequences
[GS87], or Fibonacci Sequences [Pen89].

We will begin by defining Fibonacci tilings using the projection method,
and investigating their properties. The central concern of this chapter there-
after will be describing alternative characterizations of these tilings. All of the
methods that I will discuss have two dimensional versions that will be useful
later. Notationally, we will refer to Fibonacci tilings as actual tilings of the Real
line by intervals. Fibonacci strings will be symbolic versions of the tilings.

2.2 Fibonacci tilings using the Projection Method

In this section we will explore sequences created using the projection method.
In short, this method uses the projection of an integer lattice on to the line of
slope 1/τ to obtain a sequence of short and long intervals.

Begin with the integer lattice given by {(x, y) | x, y ∈ Z}, and take the
line through the origin given by y = x/τ , as shown in Figure 2.1. Now draw
a “staircase” with vertical steps of 1 unit length, and horizontal steps of 1
or 2 unit lengths, such that every step (horizontal or vertical) will cut the line
exactly once (Figure 2.2). From this staircase, we can record a string of S’s and

3
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Figure 2.1: The Integer lattice and the line y = x/τ

Figure 2.2: The “staircase” corresponding to the line y = x/τ

L’s, such that each vertical step corresponds to S, each horizontal step of one
unit corresponds to L, and each horizontal step of two units corresponds to
LL. The staircase above yields the string LSLLSLSLLSLLSLSL. An infinite
sequence generated in this way is called a Fibonacci string. This method is
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called the projection method. Let us consider this process in more detail. First
we need some definitions and background on the general projection method.

2.2.1 Definitions and Background

A point set Λ ∈ Rn is said to be discrete if there exists r > 0 ∈ R such that
for every x, y ∈ Λ, |x − y| ≥ 2r. Λ is relatively dense in Rn is there exists
R > 0 ∈ R such that every sphere of radius greater than R contains at least
one point of Λ in its interior. A point set that is both relatively dense and
discrete is called a Delone set.

Let Λ ∈ Rn be any Delone set. The Voronoı̈ cell of a point x ∈ Λ is defined
as:

V (x) = {u ∈ Rn : |x− u| ≤ |y − u|,∀ y ∈ Λ}

That is, V (x) is the set of points of Rn that lie at least as close to x as to any
other point of Λ.

A Z-module is the countably infinite group generated by any set of vec-
tors, b1,b2, ...,bk ∈ Rn under addition. It has elements m1b1 + · · · + mkbk,
where mi ∈ Z. A Z-module in Rn is called a lattice if it is generated by n lin-
early independent vectors. A lattice will be denoted L, and it’s orbit will be
given by Lp.

Let L be a lattice and E any k-dimensional subspace of Rn where 0 < k <

n. If E ∩ L = {0}, then E is said to be totally irrational [Sen95]. A Delone set
will be called non-periodic if it admits no translations except the identity.

2.2.2 The general projection method

Let E be a totally irrational d-dimensional subspace of Rn, and let E⊥ be its
orthogonal complement (E⊥ will not necessarily be totally irrational). Let Π be
the orthogonal projector onto E and Π⊥ be the orthogonal projector onto E⊥.
Then Π and Π⊥ are linear maps. Furthermore, Π(Lp) and Π⊥(Lp) are orbits
of Z-modules in E and E⊥ respectively, generated by the projections of any
given basis of Lp.

Proposition 2.1 [Sen95] When L is an integral lattice, the following are equivalent:
i) Π(L) is everywhere dense in E .
ii) L ∩ E = {0}.
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iii) Π⊥ |L is one-to-one.

Since Π(Lp) is dense in E , it is not a Delone set. So we need to select a subset of
the points of Lp for projection. To do this, fix a compact subset with nonempty
interior, K ⊂ E⊥, and call K the window or acceptance domain. We will now
project onto E those points x ∈ Lp such that Π⊥(x) ∈ K. These will be the
points that lie in the cylinder C = K ⊕ E .

Proposition 2.2 [Sen95] Π(X) is a Delone set.

Proof. To prove this, we need to show two things: that Π(X) is discrete, and
that Π(X) is relatively dense in E .

To show that Π(X) is discrete, we will show that there is a neighborhood
of the origin in E that contains no other points of Π(X). Let x be a point in
the integer lattice Lp, and take c > 0 such that Π(x) lies in the ball of radius c

centered at 0, B0(c). Now x has the property that

|x|2 = |Π(x)|2 + |Π⊥(x)|2

and since the set Π⊥(X) is bounded by assumption, x must lie in a sphere
about 0 of some finite radius m > 0. Let U = Lp ∩ B0(m), and notice that
U must be a finite subset of Lp since Lp is discrete. Then Π(U) must also be
finite, and for r > 0 sufficiently small, we will have that Π(u) ∩ B0(r) = {0},
hence Π(X) is discrete.

Relative density follows immediately from the fact that Lp is relatively
dense in Rn and hence in the cylinder C.

Proposition 2.3 [Sen95] If E is totally irrational, then the Delone set Π(X) is non-
periodic.

This will be shown for the specific case of Fibonacci tilings later in this chapter
(see Theorem 2.10).

Proposition 2.4 [Sen95] For the canonical projection given by the window K =
Π⊥(V (0)) (where V (0) is the Voronoı̈ cell of the origin), the following are equivalent:

i) x ∈ X

ii) Π⊥(x) ∈ Π⊥(V (0))
iii) E ∩ V (x) 6= ∅

The projection method as described above will be used to create what we
will call Fibonacci tilings.
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2.2.3 Using the Projection method to create Fibonacci tilings

Consider the integer point lattice Ip
2 , where the Voronoı̈ cell of any point is a

square (Figure 2.1). Let ` be the line through the origin, with slope 1/τ . Then
` is a totally irrational subspace of E2, as it contains NO other lattice points
of E2, and hence does not pass through the vertex of the Voronoı̈ cell of any
lattice point.

Now, let X be the subset of Ip
2 whose Voronoı̈ cells are cut by `. These

points will be unambiguously ordered by `. These will be the vertices of the
“staircase” of Figure 2.2. The mth point is given by the vector

pm = (m1,m2), with m1,m2 ∈ Z, and m1 + m2 = m

and the (m + 1)th point will be:
pm+1 = (m1 + 1,m2) or

= (m1,m2 + 1). So the points in X can be seen as the nodes
of a unique staircase, with the sequence {pm} keeping track of the number of
horizontal and vertical steps.

Figure 2.3: The Fibonacci staircase

Consider the staircase generated by this procedure. Record a ’S’ for every
vertical step, and an ’L’ for every horizontal step by one interval. As we have
seen, the staircase shown will generate the sequence LSLLSLSLLSLLSLSL.
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This will be called a Fibonacci string. To obtain what we will call a Fibonacci
tiling, we need to do a little more work.

Let Π be the orthogonal projector onto `, as shown in Figure 2.4. Then

Figure 2.4: The orthogonal projection of X onto `

Π(X) is a Delone set Λ with steps of lengths

|Π(e1)| = τ/ν, |Π(e2)| = 1/ν

where ν2 = τ2 + 12, and e1 and e2 are the eigenvectors corresponding to the

matrix P =

(
1 1
1 0

)
. The vectors e1 = 1

ν (τ, 1) and e2 = 1
ν (−1, τ) form an

orthonormal basis for E2.
The line ` cuts the Voronoı̈ cell of the lattice point (u, v) if and only if

it intersects the principal diagonal of the cell. The lines of the diagonals are
x + y = m for m ∈ Z, and ` is the line y = x/τ . They intersect at the point
(m/τ,m/τ2). In other words, ` cuts the Voronoı̈ cell of (u, v) iff

u− 1/2 <
m

τ
< u + 1/2

v − 1/2 <
m

τ2
< v + 1/2

with v = m − u. Then u = ‖m
τ ‖, where ‖x‖ represents the nearest integer

function. So the coordinates of the mth node are

pm = (‖m

τ
‖,m− ‖m

τ
‖)
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Figure 2.5: The delone set Λ = Π(X) (in pink)

Projecting on to `, the mth point of Λ = Π(X) has coordinates

xm =
m

ν
+

1
τν
‖m

τ
‖

where xm is just |(a, b)|, when (a, b) is the projection of the point (u, v) onto
the line ` (Figure 2.5). Then by proposition 2.4, X = {x ∈ Ip

2 | Π⊥(x) ∈ K},
where Π⊥ is the orthogonal projector onto the line perpendicular to `, `⊥;
K = Π⊥(V (0)) is the window of the projections, and V (0) is the Voronoı̈
cell of the origin. In this case, K = [−τ2/2ν, τ2/2ν] on `⊥. We will call the
projection of X , Λ = Π(X), a Fibonacci tiling. By Proposition 2.3 this is a
non-periodic Delone set.

To obtain other Fibonacci tilings, we may simply translate the line ` ver-
tically so that it cuts the Voronoı̈ cells of the Integer lattice in a different way.
This will yeild uncountably many different Fibonacci tilings.

2.2.4 Properties of the Fibonacci tiling

We can gain much information about a Fibonacci tiling generated by projec-
tion by examining the window of acceptance. First: a few definitions.

Let r > 0. The r-star at x ∈ Λ is the finite point set B̄x(r) ∩ Λ, where
B̄x(r) is the closed ball of radius r centred at x. The set of all r-stars, up to
M -equivalence, where M is a group of motions, is called its r-atlas.
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Figure 2.6: The Voronoı̈ cell of the origin

Figure 2.7: The resulting Fibonacci tiling

We are interested in determining the (τ/ν)-atlas of the Fibonacci tilings.
Consider the three valid words of length 2 in a Fibonacci tiling: LL, LS, and
SL. Recall that L has length τ/ν and S has length 1/ν. To determine the fre-
quencies of these three words of length two in the atlas, consider K, the win-
dow of acceptance of the projection. Note that the four edges of V (0) project to



Chapter 2. Fibonacci tilings 11

four subintervals of K, which in turn partition K into 3 distinct subintervals
with disjoint interiors (Figure 2.8).

Figure 2.8: The window of acceptance of the projection

These are:
U1 =

1
ν

[−τ2/2, (1− τ)/2]

U2 =
1
ν

[(1− τ)/2, (τ − 1)/2]

U3 =
1
ν

[(τ − 1)/2, τ2/2]

|U1| = |U3| = 1/ν, and |U2| = τ−1
ν . Moreover, |U2 ∪ U3| : |U1| = τ : 1. We have

the following:

Proposition 2.5 [Sen95] The point xk is of adjacency type LL iff Π⊥(xk) ∈ U2.

Proof. We know that a lattice point (u, v) ∈ X projects to a point of type LL

if and only if {Π⊥(u − 1, v),Π⊥(u, v),Π⊥(u + 1, v)} all lie in the acceptance
interval K = [−τ2/2ν, τ2/2ν]. So u and v must satisfy:

−τ2

2ν
≤ −u + τv

ν
≤ τ2

2ν
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Figure 2.9: The Fibonacci staircase with the divided window of acceptance

−τ2

2ν
− 1 ≤ −u + τv

ν
≤ τ2

2ν
− 1

−τ2

2ν
+ 1 ≤ −u + τv

ν
≤ τ2

2ν
+ 1

which means that the projection of xk, −u+τv
2ν must be in the interval [(1 −

τ)/2ν, (τ − 1)/2ν] = U2

Using this method, we can also show that the point xk is of adjacency type
LS iff Π⊥(xk) ∈ U3, or is of the adjacency type SL iff Π⊥(xk) ∈ U1. We can
also show the following important fact:

Proposition 2.6 [Sen95] The relative numbers of short and long intervals in Π(X)
is τ : 1.

Proof. Let xn = Π(pn), and let yn+1 = xn+1 − xn. We want to show that
yn+1 = τ iff Π⊥(pn) ∈ U2 ∪ U3, otherwise, yn+1 = 1.

Now Π(pn+1 − pn) = τ iff ` cuts the Voronoı̈ cells of both (u, v) and (u +
1, v). We need both points to project into K, and this means that −u+τv

ν ∈
U2 ∪ U3, using the same argument as in the previous proposition. Recall that
|U2 ∪ U3| : |U1| = τ : 1. This result will be shown again later, using different

techniques.
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2.3 Updown generation of Fibonacci tilings

Now that we have seen Fibonacci tilings, it seems natural to ask if these se-
quences can be created in any other way. The answer is that there is a very
elegant symbolic way in which to generate Fibonacci tilings. To understand
this technique, we need to outline some background concepts.

2.3.1 Decomposition and Composition of Fibonacci Strings

Suppose we are trying to recreate the Fibonacci sequences as described by
the projection method. We know that the relative numbers of short to long
intervals is 1 : τ . Consider the following example.

Let p0 = (0, 1) represents an initial string of one L, and p1 = (1, 0) rep-
resents a string of one S, and consider the linear transformation given by the
matrix

P =

(
1 1
1 0

)

In other words, P performs the transformation given by

S −→ S + L

L −→ S

Since

p0P = (0, 1)

(
1 1
1 0

)
= (1, 0) = p1

and

p1P = (1, 0)

(
1 1
1 0

)
= (0, 1)

(
1 1
1 0

)2

= (1, 1) = (1, 0) + (0, 1) = p1 + p0

Let pi represent the number of S’s and L’s after the ith application of P to pi.
Note that

pm+1 = p0Pm+1 = (0, 1)

(
1 1
1 0

)m+1
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= (0, 1)

(
Fm+1 Fm

Fm Fm−1

)
= (Fm, Fm−1)

where Fm are the Fibonacci numbers, given by Fn+1 = Fn + Fn−1, with F0 =
0, F1 = 1. This means that in there with be Fm S’s and Fm−1 L’s in the (m +
1)th iteration. It is a well known fact that the ratio of the Fibonacci numbers
Fm : Fm−1 approaches τ : 1 as m approaches ∞. So keeping this in mind,
suppose we view the transformation multiplicatively instead of additively,
and we perform the following:

S −→ SL

L −→ S

These substitution rules are the basis of the decomposition procedure. For
example, beginning with the simple string consisting of one L, and applying
the decomposition rules yields the following:

L

S

SL

SLSSL

SLSSLSL

SLSSLSLSLSSL

SLSSLSLSLSSLSLSSLSL
...

Note that the string at each stage of this process is simply the concatenation
of the previous two strings. Continuing in this way, decomposition produces
strings that are infinite in one dimension.

Sfter the ith application of this decomposition procedure, there will be
Fi−1 S’s and Fi L’s. This means that these strings will be non-periodic. That
is, they admit no translations. This result follows from the well known fact1

that the ratio of the Fibonacci numbers, Fm/Fm−1 approaches τ , the golden
mean, as m increases. We have seen that the ratio of S’s to L’s in the (m+1)th

1The proof of this fact is an elementary argument using the eigenvectors of the matrix
P
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iteration of the substitution process is Fm : Fm+1. Hence the ratio of S’s to L’s
will approach an irrational number, and will never be periodic as a result.

Composition is the opposite procedure to decomposition and is used to
reduce strings of S’s and L’s to shorter such strings. Composition uses the
following transformation:

SS −→ L

L −→ S

S −→ e

For example:
SLSSLSLSSLSSLSLSSLSLSS

SLSSLSLSSLSSL

SLSSLSLS

SLSS

SL

S

2.3.2 Definition of Fibonacci Strings and Fibonacci tilings

Consider any two way infinite string of S’s and L’s in which neither SSS

nor LL appear. Compose it according to the composition rules above, to yield
another infinite string of S’s and L’s, called the predecessor. If this string does
not contain either of the substrings SSS or LL, we can compose it to obtain
another predecessor, and so on. We have the following definitions: [Sen95]

Definition 2.7 A Fibonacci string F is a two way infinite string of S’s and L’s
that has predecessors in all levels with respect to the composition rules.

Now associate with S and L line segments of two lengths, with L/S = τ .
Define the Fibonacci Delone set to be the end points of the sequence of line
segments associated to the letters.

Definition 2.8 A Fibonacci tiling is a two way infinite sequence

· · · ,−x2,−x1, x0, x1, x2, · · ·

of points on the Real line such that
i) xn+1 − xn ∈ c{1, τ} for c > 0
ii) the difference sequence xn−1 − xn has predecessors of all levels under composition
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Now we need to make sure that this definition agrees with our original
Fibonacci tilings generated using the projection method. We have the follow-
ing:

Theorem 2.9 [Sen95] Λ = Π(X) is a Fibonacci tiling.

Proof. We need to show that the sequence Π(pm+1 − pm) has predecessors
at all levels. That is, we need to show that there exists a rescaled copy of
the integer lattice Ip

2 that is to the predecessor of Λ as Ip
2 is to Λ itself. This

argument can then repeated to find a predecessor of the predecessor, etc.
Consider the lattice generated by the vectors τe1 and τe2. Not surpris-

ingly, this yields the lattice τIp
2 , and its Voronoı̈ cell projects to τK on `⊥. That

is, it projects to the interval τk = [−τ3/2ν, τ3/2ν] on `⊥. We have the lattices
and projections shown in figure 2.10 below.

Figure 2.10: Proof of Theorem 2.9: the integer lattice Ip
2 and the scaled integer lattice

τIp
2 with projections onto the line `

We need to ensure that this new construction does not introduce any new
points. That is, we need to show that all points projected from τIp

2 are also pro-
jected from Ip

2 . Overlapping the projections, we have the situation depicted in
Figure 2.11 (points of the scaled lattice, τIp

2 are squares).
A point of τIp

2 has coordinates (τu, τv), where (u, v) is in the standard
integer lattice, Ip

2 . The projection of (τu, τv) onto ` is τ2u+τv
ν . We now need to

show that this is also a point of Π(X). Recalling the identity τ2 = τ + 1, note
that

τ2u + τv = τ(u + v) + u = (u + v, u) · (τ, 1)
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Figure 2.11: Proof of Theorem 2.9: the overlapped projections of the Integer lattice
and the scaled lattice (τIp

2 ) onto the line `

which means that we must show: Π⊥(u + v, u) ∈ [−τ2/2ν, τ2/2ν], or that
νΠ⊥(u + v, u) ∈ [−τ2/2, τ2/2]. But this must be true since we know that
νΠ⊥(u, v) is in the interval, and

νΠ⊥(u + v, u) = −(u + v) + τu =
1
τ
(u− τv)

Note that for every Fibonacci tiling there is an

associated Fibonacci string, and vice versa. In the remainder of this work we
will use Fibonacci tiling to mean either the string or the tiling.

2.3.3 Decomposition and Composition of Fibonacci tilings

Decomposition of Fibonacci tilings works on the same premise as decompo-
sition of the Fibonacci strings. The only difference is that instead of gener-
ating longer and longer strings, decomposition cuts up the existing tiles of a
Fibonacci tiling into smaller tiles that resemble the original tiles. We are still
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performing the same transformation:

S −→ L

L −→ LS

and this transformation is performed simultaneously to each interval in the
sequence. In Figure 2.12 the decomposition process cuts up existing tiles into
smaller tiles.

Figure 2.12: Decomposition of Fibonacci tiles

Similarly, composition of Fibonacci tilings involves taking the unions of
tiles to build up larger tiles. To compose a Fibonacci sequence, we perform
the following transformation:

LL −→ S

S −→ L

L −→ e
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The composition process is shown in Figure 2.13

Figure 2.13: Composition of Fibonacci tiles

In summary, composition (decomposition) of Fibonacci strings makes the
strings shorter (longer). In contrast, composition (decomposition) of a Fib-
onacci tiling yeilds a tiling of the same length with fewer (more) tiles. That is,
decomposition subdivides the R line into more intervals, while maintaining
the ratio of interval lengths.

We can also preserve the length of the original tile in the decomposition
procedure by applying an inflation at each stage of decomposition. That is, af-
ter each subdivision of intervals into shorter intervals, multiply the endpoints
of our intervals, · · · ,−x2,−x1, x0, x1, x2, · · · by a factor of τ , to yield tiles on
the same scale as the original tile. Similarly, composition can be accompanied
by deflation to achieve a similar effect.

2.3.4 More Properties of Fibonacci tilings

Fibonacci tilings may, at first glace, seem random, but are in fact governed by
a few rules. Specifically, it is easy to see that a Fibonacci tiling will not contain
three adjacent Long intervals, nor will it contain two adjacent Short intervals.
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Figure 2.14: Proof of Theorem 2.10: A fragment of a Fibonacci tiling

Figure 2.15: Proof of Theorem 2.10: F has a translation symmetry of length d

The decomposition rules preclude such arrangements, and it is easy to see so.
From the definitions we can show a few more interesting results.

Theorem 2.10 Every Fibonacci sequence is non-periodic. That is, it cannot be writ-
ten as a finite block of terms that is repeated infinitely often.

Proof. We wish to show that every Fibonacci sequence is non-periodic, that
is, does not exhibit any translational symmetry. Notice that a symmetry of a
Fibonacci tiling must also be a symmetry of the composed Fibonacci tiling.

Begin with an infinite Fibonacci tiling of the line, F . A fragment is shown
in Figure 2.14. Suppose that F has a translation symmetry through the length
d, as indicated by the yellow bar in Figure 2.15. Compose F according to the
composition rules to obtain τ2F (Figure2.16). Iterate this process to obtain
longer and longer intervals (in the same proportions). We obtain a sequence
τ2nF with arbitrarily long intervals (Figure 2.17). Then a translation through
some distance d cannot be a symmetry of τ2nF if n is chosen to be sufficiently
large so that each interval in τ2nF is longer than d. Therefore no translation is
a symmetry of F , and hence F is non-periodic.

Figure 2.16: Proof of Theorem 2.10: The fragment composed to obtain τ2F
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Figure 2.17: Proof of Theorem 2.10: The composed fragment

Theorem 2.11 [GS87] Fibonacci tilings exhibit local isomorphism. That is, every
finite block of consecutive terms in any Fibonacci tiling occurs infinitely often in
every other Fibonacci tiling.

Proof. For the purpose of this discussion, the meeting point of two tiles in a
1-dimensional Fibonacci tiling will be called a vertex. The two tiles adjacent
to this vertex will be called the vertex neighborhood. Note that there are ex-
actly 3 possible kinds of vertex neighborhoods in a Fibonacci tiling. They are
{SL, LS,LL} (Figure 2.18). We have the following lemma:

Figure 2.18: The three vertex neighborhoods

Lemma 2.12 Each of the 3 vertex neighborhoods occurs in every Fibonacci tiling of
the line, and does so infinitely often.

This fact is easy to see, and almost as easy to prove! Since we can’t have two
adjacent short intervals, it is clear that we must have SL appearing infinitely
often in every Fibonacci tiling of the line. Recall that the decomposition of a
Fibonacci tiling is also a Fibonacci tiling by definition. Hence we must have
the sequence LLS appearing infinitely often in every Fibonacci tiling, since it
is the decomposition of SL.
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Continuing with the proof of theorem 2.11, take F to be some infinite Fi-
bonacci tiling of the line, and let F (n) be the Fibonacci tiling obtained by com-
posingF n times. LetA be some fragment ofF and suppose thatA has length
d(A) (Figure 2.19). Take n large enough so that it exceeds the minimal distance

Figure 2.19: Proof of Theorem 2.11: F with the fragmentA shown in orange and pink

between two vertices of F (n). (It is clear that we must have n ≥ S(n), where
S(n) is the length of the S interval at the nth stage of composition.) NowAwill
have at most 1 vertex ofF (n), and by extendingA if necessary, we can assume
without loss of generality that A contains precisely one vertex of F (n), say V .
It is clear now that the vertex neighborhood of this vertex, N(V ), will contain
two tiles that together will cover all of A (Figure 2.20). Now suppose that we

Figure 2.20: Proof of Theorem 2.11: Composing the fragment of F to obtain F (n)

have some other infinite Fibonacci tiling of the line, F1, and again let F1
(n)

denote the nth composition of F1. Let V1 be some vertex in F1
(n), with its ver-

tex neighborhood, N(V1) congruent to the vertex neighborhood of V , N(V ).
Decomposing N(V1) n times yeilds a patch of short and long intervals that is



Chapter 2. Fibonacci tilings 23

congruent to the patch A. We know that V1 can be chosen in infinitely many

Figure 2.21: Proof of Theorem 2.11: the topmost fragment is F1. This composes to
yeild F1

(n), which shares the same vertex neighborhood as F (n). The orange and
pink tiles appear in both F and F1

ways from F1
(n) by our lemma, which means that F1 must contain infinitely

many fragments congruent to A.

In summary, the two most important characteristics of Fibonacci tilings
are the fact that they are non-periodic and exhibit local isomorphism.

2.3.5 Updown Generation of Fibonacci tilings

So far we have constructed Fibonacci tilings using the projection method, and
explored their properties. We have also seen the composition and decompo-
sition rules for these tilings. Note that the decomposition technique used as
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S L a

b

c

Figure 2.22: The finite state automaton for the Updown generation procedure for
Fibonacci tilings

in the example above, only generates tilings that are infinite in one dimension.
By definition, a Fibonacci tiling is a two way infinite sequence of points. This
means that decomposition alone is not enough to generate a Fibonacci tiling.
The question becomes how can we generate arbitrarily large segments of an
Fibonacci tiling, that is, a two way infinite tiling of the line.

Updown Generation is one method that can be used to generate Fibonacci
tilings. It uses the a variation on the decomposition procedure to produce infi-
nite tilings. What is so striking about this method is that Updown generation
uses a finite state automaton to prescribe the growth of the tiling.

Define three maps as follows:

a : L −→ L

b : S −→ L

c : L −→ S

We can place these into a simple finite state automaton as shown in Figure
2.22. These maps are represented visually in Figure 2.23 It is somewhat easier
to think of these maps as representing embeddings of a small tile into a larger
tile.

The updown generation process begins with a single tile, either a S or a
L, and choosing a path through the directed graph. This path will be rep-
resented by a sequence of composed embeddings, say a ◦ c ◦ b ◦ a ◦ a ◦ c · · · .
Performing these embeddings on a tile, we get progressively larger and larger
tiles (always a single tile at any stage). When we have a tile of a desired size,
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a b c

Figure 2.23: Visual representation of the FSA

we can then perform the regular decomposition procedure n times, where
n is the number of maps in our path through the directed graph, to yield a
tiling which contains our starting tile. In this way, an infinite path through
the automaton will yield an infinite tiling. We can use this method to produce
arbitrarily long fragments of Fibonacci tilings.

In Figure 2.24, we start with a long tile, and perform the sequence of em-
beddings given by a◦c◦b◦a. We then apply the decomposition rules as usual
four times, to obtain a tiling on the scale of our original tile.

2.4 Summary

In conclusion, we have seen two different ways of constructing Fibonacci
tilings. These are the projection method and the method of updown gener-
ation. We have considered several properties of Fibonacci tilings, namely that
they are non-periodic and exhibit local isomorphism. We know that all Fi-
bonacci tilings by definition must accord with the composition and decom-
position rules.

In the following chapter we will consider these techniques again, this time
for the Penrose tilings.
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a

c

b

a

Figure 2.24: Updown generation of Fibonacci tilings



Chapter 3
Penrose Tilings

3.1 Introduction to Penrose Tilings

In the mid-seventies, Roger Penrose experimented with tilings, attempting to
find a single shape that could tile the plane nonperiodically. Although he did
not succeed in finding a single tile, he found two shapes that together could
accomplish this goal [Gar77]. There have been many subsequent variations on
these shapes, but the ones that we will consider here are the rhombs (Figure
3.1.

Figure 3.1: A portion of a tiling of the plane by Penrose rhombs

27
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In this chapter we will consider tilings of the plane by Penrose rhombs.
These tilings can be viewed as a two dimensional version of the Fibonacci
tilings, and we will consider similar methods for their construction. In partic-
ular, we will look at a two dimensional version of Updown generation, and a
variation on the projection method for tilings of the plane.

3.1.1 Background: Introduction to Tiling

We need a few definitions [Sen95]. A tiling T of the space Rn is a countable
family of closed sets called tiles: T = {T1, T2, . . . } such that int(Ti)∩int(Tj) =
∅ if i 6= j, and

⋃∞
i=1Ti = Rn, where int(T ) is the interior of T .

Let {T1, T2, . . . } be the tiles of a tiling T , partitioned into a set of equiva-
lence classes by some criterion M . A set P of representatives of these classes
is called the protoset for T with respect to M .

A tiling of Rn is periodic if it admits translations in n linearly indepen-
dent directions. A tiling is nonperiodic if it admits no translations. Tilings
that admit translations in k linearly independent directions with 1 < k < n

are called subperiodic. A protoset is called aperiodic if it admits only nonpe-
riodic tilings.

Using this terminology, the S and L tiles form a non-periodic protoset of
the Fibonacci tilings.

3.1.2 Background: The Penrose Tiles

Consider the Penrose Rhombs as shown in Figure 3.2, which have interior
angles of 2π/5 radians (72◦) and π/10 radians (36◦) respectively. The ratio of
the long diagonal of the ‘thick’ rhomb to the short diagonal of the ‘thin’ one
is τ : 1/τ , where τ = (1 +

√
5)/2, the golden mean.

Penrose found that one can play a kind of game with these shapes. Placing
the tiles together matching the markings given by the arrows will yield an
increasingly larger surface covered by tiles (Figure 3.3). In fact, we will soon
show Theorem 3.1.

Theorem 3.1 [GS87] The Penrose rhombs, together with the matching rules, admit
a tiling of the plane.

There are many variations on these matching rules to produce a variety of
visual results. In Figure 3.1 the tiles are coloured according to type.
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Figure 3.2: The Penrose rhombs

Figure 3.3: A tiling of the plane by arrowed rhombs

3.1.3 Composition and Decomposition of Penrose Tiles

Penrose tilings can be viewed as a two dimensional analogue of the Fibonacci
tilings of the line. There are corresponding composition and decomposition
rules that play a crucial role in Penrose’s work. Here decomposition involves
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substituting several tiles in the place of one tile, according to the divisions
indicated in Figure 3.4.

Figure 3.4: Decomposition of Penrose rhombs

This decomposition can be repeated as many times as desired. In short, de-
composition transforms a finite patch of tiles into a finite patch with a greater
number of tiles, as shown in Figure 3.5.

The finite patch may be resized to accommodate this substitution. This
secondary step is often referred to as inflation, and can also be used to produce
very large sections of tiles (not shown).

Composition is the reverse procedure to decomposition, and involves
grouping tiles together to form bigger tiles. These groupings are exactly the
same as the decomposed tiles shown in the previous figures.

We now have the necessary tools to prove theorem 3.1.
Proof. Using the decomposition rules, we can begin with a single tile, and
divide into smaller tiles. To cover a large area with tiles, simply scale the tiling
by a factor of τ at every decomposition step. This will yield an arbitrarily
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Figure 3.5: Decomposition of a patch of tiles

large patch of tiles. Recall the Extension Theorem: [GS87] Let F be a finite set
of prototiles, each of which is a topologically closed disk. If F tiles over arbitrarily
large circular disks D, then F admits a tiling of the plane. So by the extension
theorem, the Penrose rhombs admit a tiling of the plane.
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We can also define the Penrose tilings analogously to our definition of
Fibonacci tilings:

Definition 3.2 A Penrose tiling of the plane is an infinite tiling of the plane by
Penrose rhombs that has predecessors in all levels with respect to the composition
rules.

3.1.4 Properties of the Penrose tilings

As illustrated by the previous figures, the resulting tessellation has an un-
deniable aesthetic appeal. It also has numerous mathematical properties of
interest, most importantly that it is a nonperiodic tiling. This means that the
tessellation can never be broken down into a unit cell: some finite patch of
tiles which is then repeated as a whole to cover the plane. In other words, the
Penrose rhombs form an aperiodic protoset. The other property of relevance
here is that Penrose tilings exhibit local isomorphism. That is, every patch in
in a tiling of Penrose tiles is congruent to infinitely many patches in every
other Penrose tiling by the same tiles. These properties of Penrose tilings -
that they are nonperiodic and exhibit local isomorphism - are properties we
proved for Fibonacci Tilings in section 2.3.4, and the methods used here are
similar. See [GS87] and [Sen95] for details.

In addition to these unique attributes, the Penrose tilings can exhibit five-
fold rotational symmetry, a property which was previously thought to be im-
possible in a plane tiling. Penrose tilings only exhibit this symmetry in excep-
tional cases, however, and I will not discuss these here.

The aspect of Penrose tiles that we will be concerned with pertains to their
construction. What is particularly interesting about these tilings is the fact
that according to the matching rules, it is possible to create a tiling of the
rhombs that cannot be extended to a tiling of the entire plane. That is, in con-
structing the tessellation according to the matching rules, we may encounter
a problem: a section of the tiling in which neither a thin rhomb nor a thick
rhomb would be appropriate. Note that these impossibilities will also occur
in Penrose tilings constructed from other shapes, for instance the kite and
dart. This problem will be discussed at length in Chapter 5. What we are pri-
marily concerned with here is a desire to answer the following question: how
can generate a tiling of the plane by Penrose rhombs, and not encounter any
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impossibilities? We know that it is possible to construct a tiling of the plane
by Theorem 3.1. But the question is how?

There have been several different methods developed to generate Penrose
tilings. There is a three dimensional analogue to the projection method used to
create the Fibonacci Tilings of Chapter 2. As this method involves projecting
from five dimensional hyperspace, I will not discuss it in too much detail
here. In the following sections however, I will outline two other methods for
the construction of Penrose tilings, both developed by de Bruijn. The first is
called the pentagrid method, and involves creating a grid of intersecting lines
which is then translated into a tiling. That is, the grid is the dual of the tiling.
The second method is called Updown generation, which is a two dimensional
version of the method presented for Fibonacci tilings in 2.3.5.

3.2 Penrose Tilings using the projection method

The projection method for Penrose tilings is a direct analogue of the projec-
tion method for Fibonnacci Tilings, as discusssed in 2.2. I have not included
illustrations of this method for the Penrose tilings, however, as we will be
projecting from five dimensional space, and this is hard to depict in a mere
two dimensions.

Consider the integer point lattice I5 of the five dimensional space R5,
where the Voronoı̈ cell of any point is a five dimensional hypercube. Let the
point ~k = (k0, . . . , k4) where ki ∈ Z be the location vector of any point in I5.
Suppose also that we are given a shift vector, ~γ = (γ0, . . . , γ4) which is a trans-
lation in R5. We will call this hypercube tessellation the Voronoı̈ tessellation
V (I5) + ~γ. We are now ready to construct Penrose tilings by projection.

In short we want to find a plane, E that intersects the shifted hypercube
tessellation ( the Voronoı̈ tessellation) in such a way that E does not meet any
vertex, edge or 2-face of this tiling.

We know that I5 is invariant under rotation through 2π/5 about ~w =
(1, 1, 1, 1, 1), which is the body diagonal of the unit hypercube. This rotation
has 2 invariant totally irrational planes that are orthogonal to one another, and
to the fixed axis given by < ~w >, which is the one-dimensional subspace gen-
erated by ~w. Pick, for E , the plane rotated through 2π/5. Now the orthogonal
complement of E , E⊥, will be 3-dimensional, and will be given by E ′ ⊕ < ~w >,
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where E ′ is the second totally irrational plane rotated through an angle of
4π/5.

Let X be the set of lattice points of I5 corresponding to the points of the
Voronoı̈ tessellation V (I5) + ~γ whose facets are cut by E . We know that E will
only meet faces of V (I5)+~γ of dimensions 3, 4, or 5. As a result, projecting the
points of X orthogonally onto (E) will yeild a Delone set with dimensions 2,
1 or 0. This Delone set will be a Penrose tiling [Sen95]. Indeed the set X of
lattice points that we project onto E are equivalent to the set of lattice points
that project under Π⊥ into the acceptance window K = Π⊥(V (0) + ~γ).

Similar to the Fibonacci Tilings, we can gain an understanding of the types
of vertices in a Penrose tiling by examining the points in the acceptance win-
dow, K. See [Sen95] for details.

3.3 Penrose Tilings using de Bruijn’s Pentagrid Method

In his paper Algebraic theory of Penrose’s non-periodic tilings of the plane [dB81],
de Bruijn presents some remarkable results pertaining to the construction of
Penrose tilings. In particular, he develops an underlying structure for all Pen-
rose Tilings which he calls the pentagrid.

In short, this method makes use of one key observation: that a Penrose
tiling of the plane can be viewed as a ‘weave of ribbons’ [Sen95]. Let us ex-
amine this idea in more detail. Every rhomb has two sets of parallel edges. So
placing two rhombs side by side will yield three parallel lines. Continuing to
add tiles according to the matching rules, we will get a series of rhombs with
parallel edges which make up a kind of ‘ribbon’ (figure 3.6).

Now replacing the ribbons of tiles by lines that are perpendicular to the
edges that determine them, we obtain a sequence of parallel lines. In the case
of Penrose tiles, there are only five possible orientations an edge in the tiling
can have, and as a result we obtain a kind of grid structure that has five fam-
ilies of infinite parallel. This construction will be dual to the tiling in some
way, and we can reconstruct the tiling from it. In addition we can construct
grid structures independently and use them as a blueprint to create a tessel-
lation.

A pentagrid is constructed from five superimposed grids. These ordinary
grids are simply sets of parallel lines, that is, the set of points whose distance
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Figure 3.6: A ‘ribbon’ of tiles

to a fixed line is an integral multiple of a certain positive number. The five
grids are obtained by rotating one grid through angles of 2kπ/5, k = 0, ..., 4.
In addition, each grid is shifted by a certain amount, described by the real
numbers γ0, ..., γ4, and satisfying γ0 + ... + γ4 = 0, and 0 < γj < 1, j = 0, ..., 4.
Two quintuples of Real numbers, (γ0, ..., γ4) and (γ′0, ..., γ

′
4) define the same

pentagrid if and only if γj − γ′j ∈ Z for j = 0, ..., 4.
Take ζ to be the fifth root of unity, ζ = e2πi/5. Now we can define the jth

grid to be
{z ∈ C | Re(zζ−j) + γj ∈ Z}

which is equivalent to

{z ∈ C, z = x + iy | x cos(−j(2π/5))− y sin(−j(2π/5)) + γj ∈ Z}

The Pentagrid will be defined as the union of the above for j = 0, ..., 4.
A pentagrid is called regular if no more than two grid lines intersect at

any point in the plane, otherwise it is called singular [dB81]. In other words,
a regular grid will have no point in C belonging to more than two grids. The
shifts given by γ0, ..., γ4 are established to force regularity. A regular pentagrid
is shown in Figure 3.7.
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Figure 3.7: A regular pentagrid

Note that the Pentagrid is, itself a tiling of the Complex plane. To distin-
guish between the pentagrid tiling and the Penrose tiling, we will call a tile
of the pentagrid a mesh. De Bruijn proves the astonishing fact that a regu-
lar pentagrid will determine a tiling of the plane by Penrose rhombs. Let us
outline this construction.

With every point z ∈ C associate five integers K0(z), . . . ,K4(z) where

Kj(z) = dRe(zζ−j) + γje

Now let r, s ∈ Z with 0 ≤ r ≤ s ≤ 4, and let kr, ks ∈ Z as well. Then the point
z0 determined by the two equations

Re(zζ−r) + γr = kr

Re(zζ−s) + γs = ks

will be the intersection point of a line of the rth grid with a line of the sth grid.
In a small neighborhood of z0, the quintuple (K0(z), . . . ,K4(z)) will take on
four values given by

(K0(z0), . . . ,K4(z0)) + ε1(δ0r, . . . , δ4r) + ε2(δ0s, . . . , δ4s)

where (ε1, ε2) = (0, 0), (0, 1), (1, 0), (1, 1) respectively, and δij is the standard
Kronecker-delta symbol, with

δij =

{
0 i 6= j

1 i = j
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These four points will form the vertices of a rhombus. If the pentagrid is in-
deed regular, we can attach such a rhombus to every intersection point of the
pentagrid.

Alternatively, we can describe the set of all vertices of the rhombs as the
set of all points f(z), with

f(z) =
4∑

j=0

Kj(z)ζj

as z runs through C. Note that f(z) will be constant in every mesh of the
Pentagrid.

Proposition 3.3 [dB81] Attaching a rhombus to each intersection point of the pen-
tagrid as described above yields a tiling of the plane by rhombs.

Proof. Every mesh of the pentagrid has an associated point f(z). The four
meshes surrounding a point of intersection of 2 grid lines (the only kind of
intersection point in a regular pentagrid) form the vertices of a rhombus. Lo-
cally, these rhombs do not overlap and this is clear by construction. It remains
to show that every point in C is covered by a rhombus. Consider the penta-
grid tiling, and suppose z runs clockwise around a large circle. We know

f(z) =
4∑

j=0

Kj(z)ζj

and recall
Kj(z) = dRe(zζ−j) + γje

now let
λj(z) = Kj(z)− (Re(zζ−j) + γj)

and we see that 0 ≤ λj(z) < 1. So f(z) becomes

f(z) =
4∑

j=0

(λj(z) + Re(zζ−j) + γj)ζj

f(z) =
4∑

j=0

(λj(z) + γj)ζj +
4∑

j=0

Re(zζ−j)ζj
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f(z) =
4∑

j=0

(λj(z) + γj)ζj +
5
2
(z)

So we see that f(z)− 5
5(z) is bounded, and hence as z runs clockwise around

a large circle in C, f(z) describes a closed curve that runs clockwise around
w.

In effect, this construction is equivalent to associating with each intersec-
tion of two grid lines, the two unit vectors perpendicular to the lines of inter-
section. These will, in turn, determine the rhombs.

Recall that we have arranged the pentagrid so that no more than two lines
of the grids will intersect at any point of C. This means that there will only be(
5
2

)
= 10 possible configurations of intersections. In addition, the grid vectors

will determine the prototiles of the tiling. Consider the intersections shown
in Figure 3.8: To convert a pentagrid into a tiling of the plane by rhombs, sim-

Figure 3.8: The two types of intersections of grid lines

ply associate with each intersection point of the pentagrid the rhomb whose
edges are the unit vectors orthogonal to the lines of the grid (Figures 3.9 and
3.10).

In this way, we obtain the ‘thin’ and ‘thick’ rhomb shapes. It is easy to see
that these are the only shapes that can be obtained through the intersection
of the grid lines. Associating each intersection of two lines with a rhomb will
yield a tiling of the plane. Figures 3.11 and 3.12 were generated using the
regular pentagrid shown above. [Sen95]

In this way, every intersection of two grid lines corresponds to a tile in the
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Figure 3.9: The intersections of grid lines of Figure 3.8 with associated orthogonal
unit vectors

Figure 3.10: The rhombs associated with the intersections of Figure 3.8. The edges of
these rhombs are the unit vectors orthogonal to the lines of the grid.

dual tiling, and every mesh in the pentagrid will correspond to a vertex in the
dual tiling.

Note that the pentagrid only acts as a blueprint for the tiling. That is, the
lines of the pentagrid cannot be superimposed over the tiling because the
associations mentioned above will not match up in a scaled way.

Once we have generated a tiling of the plane by rhombs using information
gathered from the pentagrid, it remains to pick orientations of the rhombs (in-
terpreted in matching rules) so that they obey Penrose’s matching conditions,
and hence are Penrose tilings of the plane.

Theorem 3.4 [dB81] We can orient the rhombs in the tiling generated by the penta-
grid so that the tiling is a Penrose tiling.

Proof.
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Figure 3.11: The tiling corresponding to the pentagrid of Figure 3.7

Figure 3.12: The tiling from the pentagrid, coloured.

First we need a few definitions. In a regular pentagrid, only two lines will
intersect at any point. Hence for any point z ∈ C, at most two of the numbers
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λ0(z), . . . λ4(z) will be zero. So we will have 0 <
∑4

j=0 λj < 5. Recall λj(z) =
Kj(z)− (Re(zζ−j) + γj). So

4∑
j=0

λj(z) =
4∑

j=0

(Kj(z)− (Re(zζ−j) + γj))

Now we have γ0 + · · · + γ4 = 0, and similarly,
∑4

j=0 Re(zζ−j) = 0, as shown
below.

4∑
j=0

Re(zζ−j) =
4∑

j=0

{
x cos(−j

2
5
π)− y sin(−j

2
5
π)
}

= x cos(0)− y sin(0) + x cos(−2π/5)− y sin(−2π/5) + x cos(−4π/5)

−y sin(−4π/5) + x cos(2π/5)− y sin(2π/5) + x cos(4π/5)− y sin(4π/5)

but this reduces to

= x + 2x cos(2π/5) + 2x cos(4π/5)

= x(1 + 2(
1
2τ

) + 2(
τ

2
)

= x(1 +
1
τ
− τ)

= 0

since τ = τ−1 + 1 (from the fact that τ2 = τ + 1).
Now, combining these facts we find that

4∑
j=0

λj(z) =
4∑

j=0

Kj(z)

and since
∑4

j=0 Kj(z) must be an integer, it must take one of the four values,
1, 2, 3 or 4. In this way, every vertex in the rhombus pattern can be represented
by k0 + k1ζ + · · · + k4ζ

4 where k0 + · · · + k4 ∈ {1, 2, 3, 4}. This integer value
given by k0 + · · ·+ k4 will be called the index of the vertex.

De Bruijn notes that moving a point along the edges of the rhombs, one
will note that the index increases by 1 in the directions 1, ζ, ζ2, ζ3, ζ4, and de-
creases by 1 in the directions 1, ζ−1, ζ−2, ζ−3, ζ−4. It follows that the thick
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n.

1 2

2 3

4 3

3 2

Figure 3.13: Two possible indexings of the thick rhomb

n.

1

2

2

3

4

3

3

2

Figure 3.14: Two possible indexings of the thin rhomb

rhombs have one of the two indexings shown in Figure 3.13. Similarly, the
thin rhombs will be indexed as in Figure 3.14.

The arrows are assigned as follows: Edges connecting a vertex of index 1
to a vertex of index 2, and edges connecting vertices of index 3 and 4 will have
double arrows. These arrows will point from 2 to 1, or from 3 to 4 (Figures 3.15
and 3.16).

n.

1 2

2 3

4 3

3 2

Figure 3.15: Double arrows associated with the indexed thick rhombs

n.

1

2

2

3

4

3

3

2

Figure 3.16: Double arrows associated with the indexed thin rhombs
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Edges that connect a vertex of index 2 to a vertex of index 3 will have sin-
gle arrows. We need to orient these edges, and this will be more complicated
that the orientation of the double-arrow edges. Of course, the orientation of
the single arrows follows directly from the placement of the double arrows.

n.

1 2

2 3

4 3

3 2

Figure 3.17: Orientation of the single arrows of the thick rhomb

n.

1

2

2

3

4

3

3

2

Figure 3.18: Orientation of the single arrows of the thin rhomb

The question is whether adjacent rhombs in a tiling will share the same ori-
entation of the edges. Assuming that we have marked the rhombs with the
arrows as shown above, we need to convince ourselves that we will not have
adjacent tiles with conflicting arrow orientations. To show this, we need to
prove the following:

Lemma 3.5 Let PQ be a edge with a single arrow. Let the two rhombs that share the
edge PQ have angles α and β respectively at P . Then α and β are either both < π/2
or they are both > π/2.

It is easy to see why this will mean that we will not have conflicts. The two
arrangements shown in Figure 3.19 are the cases described in the lemma. The
arrangement in Figure 3.20 is what we wish to avoid.

To prove the lemma, let us consider it in terms of the pentagrid. Figure
3.21 shows a line l of the 0th grid and its intersections with the other lines
of the pentagrid. Now take this line l of the 0th grid (the lines of the other
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0.2

P

Q

0.2

P

Q

Figure 3.19: The two rhombs sharing the edge PQ have angles α and β respectively
at P . On the left, both α and β are > π/2. On the right, α and β are < π/2.

grids may be obtained by cyclic permutation), and consider two consecutive
intersection points of this line with lines from the pth and qth grids.

Call A the intersection of l with a line of the pth grid, and B the intersection
of l with the qth grid. Note that we do not assume here the p 6= q, although
it will be clear that this is true later. Of course p and q are in {1, 2, 3, 4}. Our
lemma becomes the following: If the segment AB has a single arrow, then p+q

is odd. The segment AB will have a single arrow if and only if
∑

j Kj(z)is 2
in the mesh on one side of AB and 3 on the mesh on the other side.

Performing a translation we can reduce the problem to the case when γ0 =
0 and l is the imaginary axis of the Complex plane, given by iy where y ∈ R.
We have the following values of Kj(z) on this line:

K1(iy) = dy sin(2π/5) + γ1e

K2(iy) = dy sin(4π/5) + γ2e

K3(iy) = d−y sin(4π/5) + γ3e

K4(iy) = d−y sin(2π/5) + γ4e
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0.2

P

Q

Figure 3.20: In this arrangement, α is < π/2 but β is > π/2. This violates the matching
rules.

Note that because the pentagrid is regular, and γ0 = 0, we must have that
neither γ1 + γ4 nor γ2 + γ3 is equal to zero. Allowing y to run from −∞ to ∞
we find that K1(iy) + K4(iy) − dγ1 + γ4e will jump from 0 to 1 when (dγ1 +
γ4e − γ1)/sin(2π/5) is in Z, and it will jump from 1 to 0 when γ1/sin(2π/5) is
in Z.

Similarly, K2(iy) + K3(iy) − dγ2 + γ3e will jump from 0 to 1 when (dγ2 +
γ3e − γ2)/sin(4π/5) is in Z, and it will jump from 1 to 0 when γ2/sin(4π/5) is
in Z.

Now l will intersect lines of the 2nd and 3rd grids alternately, and simi-
larly it will intersect the 1st and 4th grid lines alternately, so we see that p 6= q.
Toward a proof of the contrapositive, assume that p+q is even. Hence {p, q} =
{1, 3} or {p, q} = {2, 4}. In addition, since γ0 = 0, we have that γ1+· · ·+γ4 = 0
and as a consequence we must also have that dγ1 + γ4e+ dγ2 + γ3e = 1.

Using these facts, we can check that the sum K1(iy) + K2(iy) + K3(iy) +
K4(iy) is either 1 or 3 between the points A and B. It follows that K0(iy) +
· · ·+K4(iy) is either 1 on one side and 2 on the other, or it is 3 on one side and
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0

n.

1

2

3

4

0.2

P Q

0.2

P Q

0.2

P Q

0.2

P Q

Figure 3.21: A line of the 0th grid and its intersections with the other lines of the
pentagrid

4 on the other. In either case the edge corresponding to the segment AB will
have a double arrow, and we are done.

[dB81]

To sum up, De Bruijn has shown that there is a Penrose tiling of the plane
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corresponding to every regular pentagrid. More remarkably, he goes on to
show that ALL Penrose tilings of the plane by rhombs have a corresponding
regular pentagrid.

Figures 3.22 - 3.25 show an example of a tiling and its corresponding pen-
tagrid. In this example, tiles are added one by one to a growing region, and
the corresponding grid lines are shown.

Figure 3.22: A single rhomb and the corresponding intersection of the pentagrid

Figure 3.23: Adding two rhombs to the tiling adds a grid line.

Figure 3.24: Adding two more rhombs adds another grid line.

Note that a generalization of this pentagrid method exists and can be used
to generate non-periodic tilings of the plane in Rn. It is known as the multi-
grid method.
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Figure 3.25: Adding the bottom rhombs adds the fifth grid line. There are now 10
intersections of grid lines, but we have only added seven tiles. The final three inter-
sections correspond to the three orange rhombs.

3.3.1 The Pentagrid method is the projection method

De Bruijn’s pentagrid is intrinsically related to the projection method. In fact,
the projection method can be seen as simply a geometric interpretation of the
pentagrid method.

Recall that the Voronoı̈ tessellation is the hypercube tessellation of R5

translated by the shift vector γ. An intersection of a plane with the Voronoı̈
tessellation will yeild a pentagrid. A regular pentagrid will be obtained when
we have a plane E that intersects the hypercube tessellation in such a way
that E does not meet any vertex, edge or 2-face of the Voronoı̈ tessellation.
This is, in fact, equivalent to the case where our shift vector is that required
for a regular pentagrid. That is, when γ = (γ0, . . . , γ4), with γ0 + · · ·+ γ4 = 0.

Now if E intersects V (k) + ~γ, which is the interior of the translate by
(γ0, . . . , γ4) of the Voronoı̈ cell of k, V (k), then k ∈ I5 is the location vector
of a mesh in the pentagrid. This is equivalent to the requirement that

Π⊥(~k) ∈ Π⊥(V (0)− ~γ)

Drawing on De Bruijn’s work, we can show

Theorem 3.6 The vertices of a Penrose Tiling produced by a regular pentagrid given
by ~γ = (γ0, . . . , γ4) are the points

k0 + k1ζ + k2ζ
2 + k3ζ

3 + k4ζ
4
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where (k0, . . . , k4) runs through the points of the integer lattice I5 whose Voronoı̈
cell has a non-empty intersection with the plane given by:

4∑
j=0

xj = 0

4∑
j=0

(xj − γj)Reζ2j = 0

4∑
j=0

(xj − γj)Imζ2j = 0

See [dB81] for an outline of the proof.

3.4 Penrose Tilings using Updown Generation

In [dB90], de Bruijn formalizes a technique due to John Conway called up-
down generation that provides an algorithmic technique that generates Pen-
rose tilings of the plane. Not surprisingly, this method involves two phases:
up and down. In short, the up part of the process associates the assembly of a
Penrose tiling with a path through a directed graph. Any infinite path through
this graph will produce a tiling of the plane which extends infinitely in any
direction. The down part of the process is simply Penrose’s decomposition
technique, repeated a suitable number of times. In other words, any path in
the directed graph is a “recipe” for a portion of a Penrose tiling, and an infinite
path in the graph can determine a tiling of the whole plane.

In this procedure, the rhombs are divided into triangles, the thick rhombs
along the long diagonal and the thin rhombs along the short diagonal (Figure
3.26). Senechal calls the resulting triangles, elementary triangles [Sen95]. The
triangles are labeled T for the triangles resulting from the ‘thick’ rhombs, and
t for those from the ‘thin’ rhombs. The T and t triangles are then divided into
L for left and R for right, to distinguish the two sides. The resulting tiles are
labeled TR, TL, tR, and tL, and are shown in the top row of Figure 3.27.

Similar to the decomposition method, each tile is associated with a group-
ing of smaller tiles as seen in the second row of the same figure. Letting T ′R,
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Figure 3.26: The divided rhombs

tR tLTLTR

t
′

R
t

′

L

T
′

L
T

′

R

Figure 3.27: Decomposition of the elementary triangles

T ′L, t′R, and t′L represent the composed triangles, that is, those triangles that
are composed of smaller triangles, we have the following substitution rules:

T ′R = TR + tR + TL

T ′L = TR + tL + TL

t′R = TL + tR
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t′L = TR + tL

Note that these substitution rules are unique, meaning that given the type (T
or t) and direction (L or R) of some elementary tile, we know the exact ways
that it can be subdivided into smaller shapes. These relationships are shown

tR tLTLTR

t
′

R
t

′

L

T
′

L
T

′

R

t
′

R = TL + tR t
′

L = TR + tLT
′

L = TR + tL + TLT
′

R = TR + tR + TL

Figure 3.28: Decomposition of the elementary triangles in colour

in colour in Figure 3.28 to provide an intuition of the elementary triangles
and their substitution rules. This representation cannot be used in practice,
however, because it does not contain information embedded in the matching
rules of the arrowed rhombs.

These composition rules are the cornerstone of updown generation, and
their purpose is dual. They provide the basis for the subdivision of the down
process similar to the decomposition process seen in section 3.1.2. In addition,
unlike the deflation process, the composition rules also provide the basis for
the up process. That is, the up stage of updown generation involves mapping
a small tile into the larger tile that it is a part of.

We have ten embeddings which map the tiles into their composed tiles.
That is, these embeddings map a small tile into the larger tile that they are a
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part of according to the substitution rules given above. For instance, tR is a
part of T ′R. So we say that ε : tR → TR, where it is understood that the small
tile tR is a part of a larger TR. The ten maps of this kind are as follows:

α : TR → TR α′ : TL → TL

β : TR → TL β′ : TL → TR

γ : TR → tL γ′ : TL → tR

δ : tR → TR δ′ : tL → TL

ε : tR → tR ε′ : tL → tL

These ten maps are presented visually in Figure 3.29. These maps correspond
to the edges of the directed graph (or finite state automaton) seen in Figure
3.30.

Figure 3.31 illustrates the process of updown generation. The up part of
Updown generation involves mapping a small elementary tile into a much
larger elementary tile, through the sequence of maps given by a path in the
FSA. Starting with tR (bottom left) we map by δ′ to TR, by α to tL, by δ to TL,
by α′ to tR and finally by δ′ back to TR . This is the up part of the process,
which results in one large scale elementary triangle seen at the top of the
previous picture.

Here begins the down stage. This is really just Penrose’s decomposition
process, repeated as many times as we have stages in the up process. That is,
the down process simply subdivides the elementary triangle resulting from
the up stage until all of the elementary tiles making up our big tile are at the
same scale as our starting triangle. The elementary triangles are then coloured
with two colours, one for type T triangles, and one for type t triangles. The
result is a tiling of rhombs, as shown in Figure 3.32. In this way, updown gen-
eration begins with one small tile, and creates a tessellation of the plane. In
fact, not all infinite paths through the graph determine a tiling of the whole
plane. Restricted paths through the graph can be chosen to produce partial
tilings of the plane. These will be either tilings of the half plane, or tilings of a
36◦ wedge. These partial tilings can be reflected and/or rotated to obtain full
tilings of the plane. It is also these singular cases that exhibit the remarkable
fivefold symmetry that have made Penrose tilings so widely known. These
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TR

tR

TL

tL

ǫ′

δ′

α′

δ

α

ǫ

γ γ′

β β′

tR

tR

tL

tL

TL

TL

TL

TR

TR

TR

Figure 3.29: A visual representation of the maps of the FSA

are not the cases we are concerned with here, however. See [dB90] for a treat-
ment of these tilings.

3.4.1 Relationship between path and tessellation

Through the process of updown generation, every infinite path through the
directed graph yields a tiling of the plane (or some portion thereof). However,
every Penrose tiling can be associated with many sequences of maps through
the directed graph, because for every elementary triangle there is a unique
composition sequence which maps it into the full tiling. We say that two se-
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TR

tR

TL

tL

ǫ′

δ′

α′δ

α

ǫ

γγ′

β

β′

Figure 3.30: The directed graph of Updown generation

quences of maps in the directed graph are cofinal if their sequences agree
after a finite number of terms [Sen95]. We say that an infinite path p in the au-
tomaton matches a given elementary tile t if the starting state of p corresponds
to the type of tile t. Let (p, t) describe the tiling with starting tile t and path
p. The following theorem says that if two paths generate the same tiling, then
the paths differ in at most a finite number of places.

Theorem 3.7 [Sen95] A tiling is generated by both (p1, t1) and (p2, t2) if and only
if the paths p1 and p2 are cofinal.

Proof. Assuming that the tiling has no line of symmetry, we know by the
process of updown generation that the tiling covers the whole plane. Now
the distance between t1 and t2 must be finite, which means that after some
k steps, we have a big triangle T that contains both elementary tiles, t1 and
t2 in its interior. From this big triangle onward, the composition sequences
must be the same. Conversely, suppose that p1 and p2 are cofinal. Then they
must describe the same tiling, beginning at some level, say the tiling T ∗. But
composition is unique, so T ∗ can be decomposed into elementary tiles in only
one way, which means that (t1, p1) = (t2, p2).
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tR

TR

tL

TL

tR

TR

δ
′

δ
′

δ

α

α
′

Figure 3.31: Updown generation of Penrose tilings: the map δ′ ◦ α ◦ δ ◦ α′ ◦ δ′

Cofinality is an equivalence relation on the set of paths through the di-
rected graph. It partitions these paths in groups we will call families. Note
that composition preserves families. That is, if we let C(p) represent the com-
posed path p, then we say that two sequences p and p′ are cofinal if and only
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Figure 3.32: The patch of tiles produced by the Updown generation procedure seen
in Figure 3.31

if C(p) and C(p′) are also cofinal. Using these facts we have the remarkable
corollary:

Corollary 3.8 [Sen95] There are uncountably many distinct Penrose tilings of the
plane.

Proof. If there were only countably many families of sequences, then we
could pick a representative of each family to create a list of family representa-
tives. However, using the directed graph, we can always find a sequence that
is not on that list.

3.5 Summary

In summary, Penrose tilings are a two dimensional version of the Fibonacci
tilings that exhibit many of the same properties, including nonperiodicity and
local isomorphism. We have several algorithmic methods for generating Pen-
rose tilings of the plane, specifically the projection method, the pentagrid
method and updown generation. In the next chapter we will consider the
problem of attempting to grow Penrose Tilings by adding tiles one by one.



Chapter 4
Non-locality of Fibonacci Tilings

4.1 Introduction

So far we have seen two types of tilings, the Fibonacci tilings of the line, and
Penrose tilings of the plane. We are aware of two procedures to generate these
tilings, the projection method (which, in the case of Penrose tiles, is de Bruijn’s
pentagrid method) and Updown generation. The question to which we now
turn our attention is whether it is possible to create these tilings in a different
way. Specifically, we want to examine whether or not it is possible to generate
these tilings simply by adding one tile at a time to a growing patch of tiles. In
this chapter, we will consider this problem for Fibonacci tilings.

4.2 Local rules for building Fibonacci tilings

Suppose we want to build up a fragment of a Fibonacci tiling by adding tiles
one at a time to some starting tile. Recall that there are precisely three valid
words of length 2 in a Fibonacci string: LL, LS, and SL. For Fibonacci tilings,
this means that these are the only kinds of vertex neighborhoods. In addition,
we know that there are only four valid words of length 3: LSL, SLS, LLS

and SLL. So suppose we add short and long tiles to our starting tile, with-
out too much regard for their placement, except to avoid the invalid vertex
arrangements of SS, or LLL.

We know that by definition, a Fibonacci tiling must have predecessors of
all levels with respect to the decomposition rules. It follows that any fragment
of a Fibonacci tiling will also accord by the composition and decomposition
rules. So the fragment that we have built up must have some predecessor that

57
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is also a fragment of a Fibonacci tiling.
This means that we must never have either of the invalid vertex arrange-

ments SS or LLL appearing in any predecessor of our tiling. To avoid these
configurations at all levels of the hierarchy, we must avoid any strings that
will compose to yield LLL. In other words, we must avoid the following frag-
ments:

SS

LLL

SLSLS

LLSLLSLL

SLSLLSLSLLSLS

...

These fragments are shown visually in Figure 4.1.

Figure 4.1: Disallowed sequences of Fibonacci tiles

Continuing to decompose these sequences yields longer and longer se-
quences of short and long intervals that are NOT permitted in a Fibonacci
Tiling or any fragment thereof. These sequences are deceptive, however, be-
cause they are not immediately recognizable as problematic. It is only after
composing them that we see that they cannot be part of a valid Fibonacci
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tiling. Let a fragment of order d be a finite, non-overlapping set of tiles in R
that covers some line of length d. We have the following definition:

Definition 4.1 [DS95] A fragment F of order d will be a deception of order d

if every connected subfragment of F of cardinality less than d is a subset of some
Fibonacci tiling of the line but F is NOT a subset of any Fibonacci tiling of the line.

The fragments pictured in Figure 4.1 are examples of deceptions in Fi-
bonacci tilings. Note that we have deceptions of lengths 2, 3, 5, 8, 13, . . . , the
Fibonacci numbers. We can continue to decompose these deceptions indefi-
nitely, to obtain arbitrarily long strings of short and long intervals that cannot
appear in Fibonacci tilings.

Theorem 4.2 The Fibonacci tiles admit deceptions in the orders of the Fibonacci
numbers.

Proof. Simply decompose the fragment LLL to obtain them. The decompo-
sition rules will force the number of tiles in each deception to be a Fibonacci
number.

Corollary 4.3 When attempting to construct an infinite Fibonacci tiling of the line,
there is no limit on the size of regions that must be examined around the tile being
placed to ensure a correct tiling.

Proof. As the Fibonacci numbers are not bounded, we can obtain arbitrarily
long deceptions. As a direct consequence, we may have to examine an arbi-
trarily large number of tiles around the tile being placed to ensure that it is
not part of some deception.

In addition, we have the following:

Corollary 4.4 There is no local algorithm for the growth of Fibonacci tilings.

In other words, no amount of local information is enough to ensure that
the tiles we are placing are not in error. In constructing a Fibonacci tiling, we
need to consider arbitrarily long fragments of the existing tiling in order to
decide how to proceed. So how can we possibly decide how to place a tile?
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4.3 Algorithm for correct placements

Composition can always be used to determine whether or not a certain string
of S’s and L’s is indeed a Fibonacci string. Simply compose the existing frag-
ment repeatedly, until all the original tiles are contained in one large scale
tile. Then we may decompose this back down, to find out what tile we should
place next.

Alternatively, we can use the updown generation procedure to do this.
Suppose we have the fragment shown in Figure 4.2. and we want to decide

Figure 4.2: A fragment of a Fibonacci tiling: what tile should come next?

what tile comes next in the tiling. Of course we know that the next tile must be
short, otherwise we will have the forbidden LLL arrangement. But suppose
we are nevertheless uncertain about what tile to place next.

Pick one tile, and compose it according to a path through the FSA. Here
we have chosen the tile next to the site of the tile to be placed, but this is not
necessary. Follow a map through the FSA until we have all of the tiles of our
original fragment contained in one large tile (Figure 4.3). Here we have used
the map a◦c◦b◦a. Now decompose this large tile, until its constituent tiles are
the size of the tiles of our fragment (Figure 4.16). According to this algorithm,
the tile to be placed is indeed short.

However, this is NOT a local algorithm.

4.4 Non-Locality of Fibonacci Sequences

In the remainder of the chapter we will consider the idea of non-locality in
the growth of Fibonacci tilings.

4.4.1 Forcing in Fibonacci Sequences

Let us consider an example to illustrate the difficulty inherent in building up
a Fibonacci tiling.
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a

c

b

a

Figure 4.3: Using the Updown procedure to determine tile placement: the map a ◦ c ◦
b ◦ a

Figure 4.4: Decomposing the large tile determines tile placement

Suppose we begin with a Long interval (Figure 4.5, and we wish to create
a Fibonacci Tiling that is eight tiles long. It is clear that at this point, we can
add either a long or a short interval. Suppose we add a Short interval (Figure
4.6. Then the next tile, which will be the third tile in the sequence, must be
a long tile, otherwise we will have the prohibited SS sequence, as shown in
pink (Figure 4.7). In other words, the long tile in the third position is forced
by the adjacent short tile, as indicated in Figure 4.8. So far we have LSL.
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Now again we have a choice of whether to place a short or long tile. Suppose
we pick the short tile (Figure 4.9). Then again avoiding the SS error forces
the next tile to be long (Figure 4.10). Hence we have LSLSL. But now the
problem becomes more interesting. At a local level, it would seem that we
can again choose either the short or long tile to continue this Fibonacci Tiling.
However, a closer study of the entire sequence reveals that this is not the case!
If we place a Short tile in the sixth position, we will have created one of the
deceptions, SLSLS, as shown in Figure 4.11. Hence the sixth tile must be a
Long one, giving us LSLSLL. Note that to make this decision, we had to
consider tiles that were four tiles away from the site of growth (Figure 4.12).
We now have two adjacent Long tiles, and we need to avoid the error LLL

shown in blue in Figure 4.13. Hence the seventh tile must be short (Figure
4.14). This in turn forces the eighth tile to be long, and we have the eight-tile
sequence: LSLSLLSL (Figure 4.15.

Figure 4.5: A long interval: we can add either another long tile, or a short tile

Figure 4.6: We add the short tile

Figure 4.7: The prohibited sequence LSS

If we use the technique of this example but consider the other options
where we had choices, we find that there are five different eight-tile Fibonacci
tilings beginning with a long tile (Figure ??). Similarly, there are four eight-



Chapter 4. Non-locality of Fibonacci Tilings 63

Figure 4.8: The third tile in the sequence must be long, to avoid the arrangement in
Figure 4.7

Figure 4.9: The sequence LSLS

Figure 4.10: Avoiding the SS error forces the next tile to be long.

Figure 4.11: The prohibited sequence SLSLS, shown in red and blue

tile Fibonacci tilings beginning with a short tile (Figure 4.17). Hence, there are
only nine different possible eight-tile fibonacci tilings.

4.4.2 Mistakes

As we have seen, when constructing a Fibonacci tiling by adding tiles one at
time, one needs to consider tiles adjacent to the tile to be placed AND tiles
that are much farther away.
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Figure 4.12: To obtain this fragment of a tiling, we had to consider tiles that are four
tiles away from the site of growth

Figure 4.13: We need to avoid the LLL arrangement, shown in blue

Figure 4.14: Avoiding the LLL error forces the next tile to be short

Figure 4.15: Our final eight tile sequence LSLSLLSL

Suppose now that we abandon the idea of an error-free tiling, and decide
to avoid mistakes of a certain length. Then this means that the number of
possible tilings of a given length is determined by the restrictions placed on
mistakes.

We can construct some recurrence relations that will illuminate this idea.
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Figure 4.16: Five different eight-tile Fibonacci tilings beginning with a long tile

Figure 4.17: The four eight-tile Fibonacci tilings beginning with a short tile

Consider the number, nr,k of tilings of length r compatible with constraints of
length k. For instance, n9,3 is the number of different tilings of length 9 that
can be constructed avoiding mistakes of length 3 or less. That is, these tilings
cannot contain the mistake ’SS’ or ’LLL’.

When k = 1 there are no constraints on tilings of any length. Therefore,
the number of tilings of length r is just nr,1 = 2r. It is easy to see that the
following is true:

nr,k + nr,k = nr+1,k (k = 1; r ≥ 0)

Consider the case when k = 2. In this instance, we are building tilings that
do not contain the error SS. Suppose that we are trying to build a sequence
of length r + 2. Since we are not concerned with anything other than the SS
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error, we can add a 1 to any sequence to obtain a longer sequence. So we will
have n2,r+1 tilings of length r + 2 ending in 1. We now need to determine
how many tilings of length r + 2 will end in 0. Because we are avoiding the
error SS, we can’t simply add a 0 to every sequence of length r + 1. We can,
however, add a 1 to every sequence of length r, followed by a 0, to yield n2, r

tilings of length r + 2 ending in 0. That is we have the following recurrence
relation:

nr,k + nr+1,k = nr+2,k (k = 2; r ≥ 0)

We can use similar reasoning for the case k = 3, 4. Recall that errors are
created by decomposing the original error SS, and therefore appear in lengths
given by the Fibonacci numbers. So avoiding errors of length 4 will be the
same as avoiding errors of length 3, because there are no errors of length 4. In
this case we are not allowing the strings SS or LLL to appear in our tilings.
Suppose we are trying to construct a tilings of length r + 3. Consider the
following table of possibilities:

. . . r r + 1 r + 2 r + 3

. . . S L S L

. . . L L S L

. . . L S L S

. . . L S L L

. . . S L L S
To enumerate the number of possible tilings, notice that in the first three

lines of the table, we add a SL to every sequence of length r + 1 ending in L,
and we add LS to every sequence of length r + 1 ending in S. Hence the first
three lines of the table represent n3,r+1 correct tilings of length r + 3. In the
last two lines of the table, note that we add SLL to every sequence of length
r ending in L, and LLS to every sequence of length r ending in S. So the last
two lines of the table represent n3,r additional tilings of length r + 3. We have
established:

nr,k + nr+1,k = nr+3,k (k = 3, 4; r ≥ 1)

Continuing in this manner, we find the following:

nr,k + nr,k = nr+1,k (k = 1; r + 1 ≥ 1)

nr,k + nr+1,k = nr+2,k (k = 2; r + 1 ≥ 1)
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nr,k + nr+1,k = nr+3,k (k = 3, 4; r + 1 ≥ 2)

nr,k + nr+2,k = nr+5,k (k = 5, 6, 7; r + 1 ≥ 3)

nr,k + nr+3,k = nr+8,k (k = 8, 9, 10, 11, 12; r + 1 ≥ 5)

nr,k + nr+5,k = nr+13,k (k = 13, 14, ..., 20; r + 1 ≥ 8)

...

In general we have

nr,k + nr+fi−2,k = nr+fi,k (k = fi, ..., fi+1 − 1; r + 1 ≥ fi−1)

where the fi’s are the Fibonacci numbers given by

fi = fi−1 + fi−2; i = 2, 3, 4, ... f0 = 0, f1 = 1

These recurrence relations generate the following table of the number of
tilings of length r compatible with constraints of length r.

r k = 1 2 3, 4 5, 6, 7 8,...,12 . . .

0 1 1 1 1 1 . . .
1 2 2 2 2 2 . . .
2 4 3 3 3 3 . . .
3 8 5 4 4 4 . . .
4 16 8 5 5 5 . . .
5 32 13 7 6 6 . . .
6 64 21 9 7 7 . . .
7 128 34 12 8 8 . . .
8 256 55 16 10 9 . . .
9 512 89 21 12 10 . . .
10 1024 144 28 14 11 . . .
11 2048 233 37 17 12 . . .
12 4096 377 49 20 13 . . .
13 8192 610 65 24 15 . . .
14 16384 987 86 29 17 . . .
15 32768 1597 114 34 19 . . .
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Note that nr,1 are powers of 2, and nr,2 are the Fibonacci numbers. Note
also that if k ≥ r,

nr,k = r + 1

which means that there are only r + 1 correct Fibonacci tilings of length r.
That is, these are the only tilings of length r without mistakes. Indeed this
is consistent with the example we saw involving tilings of eight tiles, which
yielded nine correct fragments.

From the recurrence relations it is clear that if we fix k, then nr,k will grow
exponentially as r increases. But as noted, the growth in the number of correct
Fibonacci tilings is just linear in r. This means that for fixed k and large r, the
probability of making a mistake while constructing such a sequence becomes
one. There is no way to avoid making mistakes.

4.5 Summary

In summary, we have seen that there is no local growth algorithm for the
generation of Fibonacci tilings. In addition, attempting to avoid mistakes is
an inherently non-local procedure.



Chapter 5
Non-locality of Penrose Tilings

5.1 Introduction

We have seen that Fibonacci tilings admit deceptions of all orders, and must
grow in some kind of non-local way. This chapter will be dedicated to the
examination of similar questions for Penrose tilings.

5.2 Local matching rules for Penrose tilings

Let’s now turn our attention to the problem of attempting to build up a Pen-
rose tiling of thick and thin rhombs one tile at a time. This is a more compli-
cated scenario than the Fibonacci tilings, but we will soon see that it shares
many similarities.

Beginning with some finite patch of tiles, there are three possible situa-
tions when attempting to place a tile along an unmatched edge of the patch.
The first case is that the decision is forced: only one of the two types of tiles
will fit (Figure 5.1). In these cases, only the thick or thin rhomb would be
appropriate.

The second case is where neither tile will fit. This indicates that something
has already gone wrong in the construction of the tiling. The situation in Fig-
ure 5.2 looks correct until closer examination reveals that the red tile is in fact
a hole. The matching rules preclude the existence of a tile to fill this hole.
Figure 5.3 shows a similar situation with a thick rhomb.

The last and most interesting case is when we have an apparent choice as
to which tile to place.

In Figure 5.4, it seems that either tile would be an appropriate choice. This

69
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Figure 5.1: The yellow tiles are examples of two tiles that are forced.

Figure 5.2: The area in red is a hole in the tiling that cannot be filled by any tile
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Figure 5.3: The red area is a gap in the tiling that cannot be filled with any tile

Figure 5.4: In this case, we have a choice about which tile to place: either tile appears
to be appropriate
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Figure 5.5: A growing patch of tiles: Suppose we wish to add a tile to the leftmost
edge.

Figure 5.6: According to the matching rules, we can add either a thick or thin rhomb

case is not nearly as simple as it first appears, however. We will soon see that
most of the time the appearance of choice is an illusion. That is, one of the
choices will result in a patch of penrose tiles that is extensible, and the other
will not. This problem is the central concern of the remainder of this chapter.

To begin, consider the arrangement of tiles shown in Figure 5.5. Suppose
we wish to add a tile at the leftmost unmatched edge. According to the match-
ing rules, we can add either a thick or thin rhomb (Figure 5.6). Suppose we
choose the thick one, as shown in Figure 5.7 This choice immediately forces
some surrounding tiles, shown in orange in Figure 5.8. However, at the far
right there is a gap that cannot be filled by either tile. This is evidence that a
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Figure 5.7: Suppose we add the thick rhomb

mistake has been made. Since all the tiles in orange are forced, it is evident
that the pink tile is incorrect. Examining the entire patch of tiles makes it clear
that we must place a thin rhomb along the left unmatched edge. To proceed,
we must disassemble the patch and return to the original configuration of Fig-
ure 5.5 We now add the thin rhomb, and see that this produces more favorable
results (Figure 5.9)

This simple example illustrates the problem with the local matching rules
for Penrose tiles. Just because it is possible to place a tile locally, it does not
guarantee that the tiling can continue to infinity.

Another way to view this problem is by using the composition rules.
When two thick rhombs are placed together along an edge with a short ar-
row, there is always a specific way in which this arrangement is composed.
It is easy to convince ourselves (by checking with Figure 3.29, for example)
that in such a case, half of each of these rhombs will make up part of a new
large rhomb, as shown in Figure 5.11. As a result, when two such matchings
happen side by side as in Figure 5.7, we obtain the composed arrangement
seen in Figure 5.10. It is not hard to see that this is an incorrect patch.

It is useful to develop some terminology to distinguish between place-
ments that cause errors and those that do not.

For connected finite arrangements of tiles, the term legal will refer to a
collection of tiles fitted together in accordance with the matching rules, but
where an extension of the patch to infinity is not necessarily possible. In con-
trast, a correct arrangement of tiles is a subset of a legal tiling of the entire
plane. In other words, all correct patches are also legal, but legal patches are
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Figure 5.8: The choice of the thick rhomb forces the tiles shown in orange. At the far
right there is a gap that cannot be filled by either tile. This is evidence that a mistake
has been made.

Figure 5.9: Adding a thin rhomb instead of the thick rhomb produces a patch of tiles
without gaps.



Chapter 5. Non-locality of Penrose Tilings 75

Figure 5.10: Two thick rhombs joined along a single arrow edge. These must compose
to yield another thick rhomb, as shown in red.

Figure 5.11: The patch of Figure 5.7, composed. The result is the incorrect arrange-
ment, shown in red.
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Figure 5.12: A simple mistake

not necessarily correct. Let us also define a mistake as the placement of a tile
that will extend a correct tiling to a legal but incorrect tiling. [Pen89] In other
words, the mistake will mean that the tiling will not extend to infinity. We will
use error to mean the manifestation of a mistake in the tiling, such as a hole
or an overlap. The curious thing about these mistakes is that the error in the
tiling that results from the mistake is not necessarily local to the mistake. This
will be the subject of Section 5.4.

In Figure 5.6, both choices are legal. However, we know that the five tile
arrangement shown in Figure 5.12 is incorrect.

It would seem that now that we know to avoid this particular arrange-
ment, we could easily construct tilings that would continue to infinity. We
need only to make sure that the pictured arrangement does not occur any-
where in the growing patch of tiles. The problem is not so simple. Recall that
all Penrose tilings of the plane (that is, infinite Penrose tilings) must accord
with the composition and decomposition rules. This in turn means that the
simple mistake pictured in Figure 5.12 must not appear at any stage of the hi-
erarchy. In other words we need to avoid all of the arrangements in Figure
5.13

We can continue to decompose our original arrangement to obtain a ver-
sion of this patch on any level of the hierarchy. This means that we need to
avoid all of these arrangements when constructing tilings one tile at a time.
This is a challenging task, and is made particularly challenging by the decep-
tive nature of the arrangements above. We have the following definition:

Definition 5.1 [DS95] A regular patch P of order r will be a deception of order
r if every connected subpatch of P of cardinality less than r is a subset of some tiling
of the plane but P is NOT a subset of any tiling of the plane.
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Figure 5.13: Decomposed versions of our five-tile mistake (Figure 5.12). We must
avoid all of these configurations when building up a tiling of Penrose tiles. In addi-
tion, we can continue to decompose these arrangements indefinitely.
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Figure 5.14: Example of a deception

Here a patch is a finite, non-overlapping set of tiles in R2. It is called regular
if it is homeomorphic to the closed unit disc. A regular patch is of order r if it
covers some disc of radius r.

In short, a deception is an incorrect patch without holes for which we can-
not decide by local inspection whether the patch is correct.

Theorem 5.2 [DS95] The aperiodic protoset of Penrose rhombs admits deceptions of
all orders.

Proof. The simplest example of a deception is shown in Figure 5.14. We can
decompose this deception using the decomposition rules to obtain deceptions
of all orders.

Indeed because we can continue to decompose this simple deception in-
definitely, there is no limit to how many tiles we need to examine in order
to ensure that we do not make some version of our original mistake. That is,
even an augmentation of the local matching rules to include the consideration
of all tiles within the radius r would be insufficient to guarantee the creation
of an arbitrarily large patch of a correct Penrose tiling.

Corollary 5.3 [Pen89] When attempting to construct an infinite Penrose tiling of
the plane according to local matching rules alone, there is NO LIMIT on the size of
regions that must be examined around the tile being placed to ensure a correct tiling.

In other words, the decision of which tile to place at an unmatched edge may
require an analysis of an arbitrarily large area of the existing tiling. There is no
upper bound on the size of this area, which follows from the fact that we can
decompose the original mistake indefinitely, to obtain versions of the mistake
at any level of the hierarchy.

Furthermore, we have the fact that:
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Figure 5.15: A growing patch of tiles. We need to determine what tile to place along
the top left edge.

Corollary 5.4 [Pen89] There is no local algorithm for the growth of Penrose tilings.

In other words, no amount of local information is enough to guarantee that a
given regular patch of Penrose tiles belongs to some tiling of the plane.

So how can we ensure that tiles we are placing are placed correctly?

5.3 An algorithm for correct placements

Indeed we have an algorithm for determining the correct placement. By defi-
nition, all Penrose tilings that continue to infinity must accord with the com-
position rules. Therefore, one way to guarantee the creation of an infinite
tiling is by creating larger and larger versions of the tiles, made up of many
rhombs of the original size. Begin by composing the existing tiles into larger
tiles, and those tiles into larger tiles and so on, until we have the entire pat-
tern that we started with contained within one large scale tile. Decomposing
this large tile back down so that its constituent tiles are the size of our orig-
inal tiles will answer the question of what tiles may be placed correctly. The
easiest way to do this is to make use of the updown generation procedure.

Consider the patch of tiles shown in Figure 5.15 We need to decide what
tile to place along the top left edge. In fact, this decision will dictate whether
the patch is correct. Consider Figure 5.16. The placement of this top tile (the
two options are shown in pink) will determine whether the patch is correct
or merely legal. That is, if we choose to place a thick rhomb along this edge,



Chapter 5. Non-locality of Penrose Tilings 80

Figure 5.16: The two possibilities for placement of a tile along the top left edge (shown
in pink). Note that the arrangement on the left corresponds to our original mistake,
as indicated by the dashed red lines.

Figure 5.17: Divide the tiles into elementary triangles, and select a starting triangle,
shown in red.

we will be creating a decomposed version our simple deception, the topmost
image in Figure 5.13. In the following example, we will use the Updown pro-
cedure to determine what tile to place here.

Begin by subdividing the rhombs into elementary triangles and identify
some starting triangle, as shown in red in Figure 5.17. Using the finite state
automaton shown in Figure 3.30 we can create a map which will determine
the red tile’s position in the given patch of tiles. The red tile is of type tR. We
will use the following map:

δ′ ◦ γ ◦ γ′ ◦ ε′ ◦ ε′ ◦ ε′

which will map the following

tR −→ TR −→ TL −→ TR −→ TR −→ TR −→ TR

This process is shown in Figures 5.18 - 5.20.
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↓ δ′

↓ γ

↓ γ′

↓ ε′

Figure 5.18: The Updown procedure used to determine correct placement. Pick a
starting tile, and map it into increasingly larger tiles until the whole patch is con-
tained within one large tile.
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↓ ε′

↓ ε′

Figure 5.19: The Updown procedure used to determine correct placement, continued



Chapter 5. Non-locality of Penrose Tilings 83

Figure 5.20: The Updown procedure used to determine correct placement, continued.
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We stop when our whole patch of tiles is contained within one large tile, as
shown. Now continuing with the ’down’ part of the updown procedure, we
decompose the large tile six times to obtain the correct tiling shown in Figure
5.21.

Associating the two elementary triangles making up each rhomb, we have
the tessellation shown in Figure 5.22, which we know to be correct.

As we suspected, this algorithm has placed tiles along the left edge such
that when composed, they will form a thin rhomb (Figure 5.23).

Note that there may be some choice about how the tiles are grouped to-
gether. This simply reflects the fact that there may be different paths through
the FSA that lead to the same tiling, a consequence of Theorem 3.7. Of course
we can pick different starting tiles. In addition, there may be different ways
to include a small tile in a larger one.

This is always an algorithm for determining correct placement. However,
even this method is flawed as the mistake can be repeated at each stage of the
hierarchy. That is, while aiming to create large scale rhombs is a good strategy,
the mistake can repeat itself at this larger scale. This in turn makes mistakes
even harder to find. And of course, it is not a local algorithm.

To summarize so far, we have seen that Penrose tilings, like Fibonacci
tilings, admit deceptions of all orders. In addition, legal patches of Penrose
tiles may demonstrate interesting properties when they are not correct – over-
lapping tiles or unfillable gaps. The remainder of this chapter will be devoted
to attempting to understand the relationship between errors, mistakes and
deceptions, and the non-local character of these mistakes. We will soon see
that the erroneous placement of a tile (a mistake) can cause gaps or overlaps
(errors) at an arbitrarily large distance from the mistake.

5.4 Non-locality of Penrose tilings

Suppose again that we choose not to make use of the methods we know to
generate Penrose tilings of the plane (Updown generation and the pentagrid
method), and instead to begin adding tiles one at a time to some starting tile.
Although we know that it must be possible to tile the plane this way by The-
orem ??, the task is more difficult that one might at first suspect. Sooner or
later in this process one will encounter a gap or hole in the tiling that cannot
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Figure 5.21: Decomposing the large tile six times to obtain this correct tiling of ele-
mentary triangles.
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Figure 5.22: Associating the elementary triangles into rhombs.
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Figure 5.23: Our original tiling configuration is outlined in red. This algorithm placed
a thin rhomb along the leftmost edge.

be filled. To proceed, we must disassemble part of the existing tiling, and re-
arrange it in an appropriate way. This is a well known fact about Penrose tiles
[Gar77], and is particularly interesting problem in light of the fact that Pen-
rose tiles are often used as models to represent the growth of quasicrystals. If
quasicrystals are to be modeled on these tilings, then it would seem that there
would be some way to grow the tilings in the most literal sense – by adding
tiles one at a time.

Consider again our original configuration of Figure 5.5, and suppose we
are adding tiles along the leftmost edge.

As we can see in Figure 5.24, the problem looks more complicated the
further we decompose the rhombs. Now recall that we can legally add either
a thick or thin rhomb to the unmatched left edge, although only the addition
of the thin rhomb will result in a correct patch. In the Figure 5.25, we can see
the differences between adding a thin or thick rhomb will make when the tiles
are decomposed.

But now consider these possibilities overlapped (Figure 5.26). The orange
tiles are shared by both possibilities.

The pattern formed by the orange tiles is quite remarkable. Suppose for a
moment that we are again trying to grow a Penrose tiling by simply following
the matching rules and that the rhombs are very small, as in the bottom sec-
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Figure 5.24: The original configuration of Figure 5.5, at various stages of decomposi-
tion. We know that we must add a thin rhomb to the leftmost edge of the top picture,
and as a result we need to add tiles accordingly to the lower configurations. The
problem becomes more difficult the further we decompose the patch.
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Figure 5.25: The differences between adding a thin or thick large scale rhomb at var-
ious stages of the decomposition process
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Figure 5.26: Adding a thin or thick rhomb: the scenarios overlapped. The orange tiles
are shared by both possibilities. (Note that many of the orange tiles belong to the
thick rhomb but not the thin one. In fact, it is easy to see that, due to the matching
rules, the scenario involving with thin rhomb will still contain all of the orange tiles.
That is, whether we add a thin or thick rhomb to the leftmost unmatched edge of the
thin rhomb, we will obtain the pattern shown.)
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Figure 5.27: When adding tiles one by one, we may proceed unambiguously until
this configuration is reached. Any tiles added along the top left diagonal will now
determine whether we are growing a large scale thin rhomb or thick rhomb.

tion Figure 5.24. We know that to ensure a correct patch, we need to add small
tiles in such a way that when composed they will constitute a large scale thin
rhomb. The tiles in orange tell us that we may proceed unambiguously until
we reach the configuration shown in Figure 5.27.

In other words, when we first begin adding tiles, there are no differences
between the large thin rhomb and the large thick one. In fact, if the ratio of
the sizes of the small tiles to the large ones is very large, we will have added
an arbitrarily large number of tiles before the difference between the thin and
thick rhombs become apparent.

Let us now turn to a slightly larger patch of tiles. Consider the two correct
arrangements shown in Figure 5.28.

Overlapping the images, we see they only have a few tiles in common
(Figure 5.29).

Decomposing the rhombs yields an interesting result. Contrary to what
we might intuit about the decomposition of the above arrangements, the de-
composed patches are strikingly similar, as we can see in Figure 5.30.

And colouring the tiles that are not the same for both decompositions
yields the patterns seen in Figures 5.31 and 5.32.
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Figure 5.28: Two correct arrangements

Figure 5.29: The configurations of Figure 5.28 overlapped. There are only a few tiles
in common.
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Figure 5.30: Decomposing the overlapped configurations reveals many shared tiles.

Figure 5.31: The tiles that differ in the two configurations of Figure 5.30 are coloured
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Figure 5.32: Separating the overlapped arrangements of Figure 5.31

Figure 5.33: The thick and thin units that make up a worm

The differences between the two configurations manifest along worms,
the coloured lines of tiles shown above.

5.4.1 Worms

Worms (or Conway Worms [GS87]) are the coloured ribbon-like patterns seen
in Figures 5.31 and 5.32. They are built up of a sequence of short and long
units (Figure 5.33), made up of three tiles each. The long unit is τ times as
long as the short unit.

Decomposing a worm yields another worm with the opposite orientation
and more intervals (Figure 5.34).

Despite the fact that the worms are not laterally symmetric, their horizon-
tal boundaries are the reflections of one another across the central axis of the
worm. In other words, the horizontal zigzag boundary on the top and bot-
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Figure 5.34: Decomposing a worm yields another worm with the opposite orientation
and more intervals
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Figure 5.35: A worm oriented up

Figure 5.36: A downward oriented worm

tom of the worm is the same, including matching rules. [GS87] The worm in
Figure 5.35 is oriented up, while the worm in Figure 5.36 is oriented down.

Overlapping the possibilities, we see that the horizontal boundary of the
worm remains unchanged (Figure 5.37).

Worms meeting at an angle of 72◦ can intersect each other in two ways
(Figure 5.38).

Decomposing these intersections, we obtain another intersection of the
same type, with the orientations of the worms reversed (Figure 5.39.

Figure 5.40 shows an incompatible worm arrangement.

Figure 5.37: Overlapped worm orientations: the horizontal boundary remains un-
changed.
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Figure 5.38: Worms intersecting in two ways. On the left, the intersecting worms
share three common tiles that appear in both worms. On the right, one worm over-
laps and interrupts the other worm.

This incompatible worm arrangement is the key to understanding mis-
takes and the resulting errors in Penrose tilings.

5.4.2 Mistakes

Now let us return for a moment to our previous example (Figure 5.41). Recall
the following mistake (the placement of the pink tile) and the resulting error
(the gap on the right that cannot be filled) :

Decomposing the tiles and identifying the worms, we can see that the er-
ror manifests itself in the incompatibility of the pink worms (Figure 5.42).
That is, the two pink worms are of differing orientations. As a result, there is
no tile that can be placed to join them. We can fix this by changing the right-
most tile into a thin rhomb, as shown in Figure 5.43.

Note that the only thing we had to change was the orientation of the
worm. That is, the only difference between the thin and thick rhomb is the
orientation of the worm. The fact that not all of the worm orientations can in-
tersect is what will cause mistakes to manifest themselves. As a result, errors
will only emerge along the lines of the worm.

It is possible to associate with every rhomb a boundary of worms. Con-
sider the thick rhomb. The three arrangements shown in Figure 5.44 are three
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Figure 5.39: Decomposing worm intersections yeilds more intersections of the same
type, with the orientation of the worms reversed.
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Figure 5.40: An incompatible worm arrangement

Figure 5.41: Our original mistake was the placement of the pink tile, and the unfill-
able gap is the resulting error.
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Figure 5.42: Decomposing the tiles and colouring the worms, we see that the error is
actuallythe incompatibility of the two different worm orientations shown in pink.
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Figure 5.43: Changing the rightmost tile into a thin rhomb resolves the error of Figure
5.42. Note that this amounts to turning the worm orientations to match.
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Figure 5.44: Three legal arrangements of tiles surrounding a thick rhomb

legal (and potentially correct) arrangements of tiles surrounding a central
thick rhomb.

Overlapping these arrangements, we see that they share few common tiles
(Figure 5.45). Decomposing the arrangements yeilds the three larger legal
patches shown in Figure 5.46 Overlapping them produces the arrangement
shown in Figure 5.47. We see clearly the emergence of a pattern of worms
(Figure 5.48). Separating the three arrangements again, we can see that the
only differences between the patches are the orientations of the worms (Fig-
ure 5.49). In other words, all three arrangements share all of the tiles shown
in Figure 5.50. The only thing that differentiates the possibilities is the ori-
entations of the worms. Now with four intersecting worms, each having two
possible orientations, we have sixteen possible arrangements. We know, how-
ever, that one out of the four possible ways each pair of worms can intersect
will not be correct (or even legal). Examining the cases, we find that only
seven of these sixteen arrangements are legal. The other nine possibilities will
have errors. The arrangements shown in Figures 5.51 and 5.52 are legal.

Composing these arrangements will yield seven different arrangements
of tiles (three of which were used in the example above, and the other four
are not shown). This is easy to see, once we notice that the central rhomb can
be surrounded by four worms as shown In Figure 5.53. So we know that there
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Figure 5.45: The patches of Figure 5.44 overlapped. The only shared tile is the central
rhomb.

Figure 5.46: The arrangements of Figure 5.44 decomposed
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Figure 5.47: Overlapping the arrangements of Figure 5.46
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Figure 5.48: The patterns of worms in Figure 5.47

Figure 5.49: Separating the arrangements we see that the only differences between
the patches are the orientations of the worms.
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Figure 5.50: All three arrangements share all of the tiles in this diagram.
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Figure 5.51: Four of the seven possible worm arrangements to fill the holes of Figure
5.50
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Figure 5.52: Three of the seven possible worm arrangements to fill the holes of Figure
5.50
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Figure 5.53: The thick rhomb can be surrounded by four worms

must be four worms in the coloured areas indicated in Figure 5.54 Note that
what worm is on top will depend on the orientations. One possible arrange-
ment is shown in Figure 5.55. We can decompose this to obtain the worm
quadrilateral seen in Figure 5.56. Continuing to decompose this will give one
of the seven correct worm arrangements shown previously. In fact we can
continue to decompose these indefinitely to obtain larger and larger patches
of tiles bounded by worms.

It is not hard to check that these seven arrangements are the only ways to
correctly cover the quadrilateral shown in Figure 5.57 with tiles on the scale
of the central tile. In this way every thick rhomb is bordered by four worms.
Decomposing these arrangements yields increasingly large patches of tiles
bounded by worms. The tiles inside the quadrilateral defined by the worms
are forced. That is, in a correct tiling, the tiles inside the worm quadrilateral
must be as shown.

This can also be seen in a slightly different way. Start with the thick rhomb,
as shown in Figure 5.57. Decompose this (Figure 5.58) and add any forced tiles
(shown in orange in Figure 5.59). Repeating this procedure (decomposing and
adding forced tiles) on this arrangement yields a larger patch of tiles (Fig-
ures 5.60 and 5.61). As we continue this process, we will obtain a sequence
of patches that are increasing in size, with their boundary approaching the
quadrilateral shown in green.

Repeating this analysis with the thin rhomb, we find that the thin rhomb
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Figure 5.54: There must be four worms in the coloured areas

Figure 5.55: One possible arrangement of worms around a thick worm
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Figure 5.56: The worm quadrilateral obtained by decomposing Figure 5.55

Figure 5.57: There are seven ways to to correctly cover the quadrilateral above with
tiles on the scale of the central rhomb.
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Figure 5.58: Decomposing the central rhomb

Figure 5.59: Adding forced tiles to the decomposed patch
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Figure 5.60: Decomposing the new patch

Figure 5.61: Adding forced tiles to the decomposed patch. Repeating this process will
produce a patch of tiles whose boundary approaches the green quadrilateral.
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Figure 5.62: The quadrilateral surrounding a thin rhomb

is bordered by a different quadrilateral (Figure 5.62). Of the sixteen possible
worm arrangements in this case, only five are without errors (Figure 5.63)

To summarize so far, we have seen that the only differences between var-
ious arrangements of tiles are the worm orientations. Now consider the ar-
rangement shown in Figure 5.64. We need to fill in the blank space with a
worm. But notice that a single tile, placed anywhere in the blank area will de-
termine the orientation of the entire worm (Figures 5.65 5.66). This is precisely
the reason that mistakes are so hard to avoid. Mistakes (the placements of tiles
that will cause errors) occur because a single tile will determine the worm ori-
entation. That is, a single tile placed in the path of a worm will determine the
orientation of that worm. These placements may cause errors because worm
interactions occur at an arbitrarily large distance from the determination of
the worm orientation. In Figure 5.67, worms are indicated in red. Any single



Chapter 5. Non-locality of Penrose Tilings 115

Figure 5.63: The five arrangements of worms that can surround a thin rhomb. The
orientations will reverse as they are composed or decomposed.
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Figure 5.64: This blank space needs to be filled with a worm

Figure 5.65: A single tile placed in the hole will determine the orientation of the worm

Figure 5.66: The worm orientation is determined by the first tile placed.



Chapter 5. Non-locality of Penrose Tilings 117

Figure 5.67: The quadrilateral of forced tiles surrounding a thin rhomb. Worms are
indicated in red. A tile added at A may be incompatible with a tile placed at B. How-
ever, this incompatibility will only be evident at C



Chapter 5. Non-locality of Penrose Tilings 118

A B

C

Figure 5.68: The difference between thin and thick rhombs is in the orientation of the
worms. This is why our original mistake is indeed a mistake

tile added to any side of the worm quadrilateral will force the orientation of
the entire worm. In the worst case scenario, a tile placed at A will be incom-
patible with a tile placed at B.

It is precisely this issue that is behind our familiar deception. As we have
seen, the worm appears where the difference between thin and thick rhomb
manifests, as seen in Figure 5.68. A tile placed at A (anywhere along the red
line) will determine the orientation of the leftmost worm. Similarly, any tile
placed along the line B will determine the orientation of the rightmost worm.
These orientations have a one in four chance of being incompatible. The error
will occur when both of the outermost tiles are thick rhombs. In this case,
the error will occur at the point C (assuming that we are growing the tiling
radially outward from the central tiles). The further we decompose the sub-
tiles, the further away (in number of tiles) the error becomes from the site of
the mistake.

In other words, when placing a tile at A, we need an awareness of what is
happening at B, and how that will affect point C!

As we have seen, errors occur because worm orientations are incompati-
ble. Mistakes occur because it may be the case that the tile being placed will
determine the orientation of a worm that will be incompatible with an exist-
ing worm (that is, at least one tile of an existing worm). In other words, when
adding a tile to an existing patch of Penrose tiles, we need information about
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Figure 5.69: The simple mistake

tiles that are arbitrarily far away. As the number of tiles in our arrangement
grows, the possibility of avoiding mistakes becomes vanishingly small. In this
way, the growth of Penrose tiles is a non-local procedure.

5.4.3 Worms and Fibonacci Strings

One thing that is particularly amazing about the worms found in these tilings,
is that they bear a striking resemblance to the Fibonacci tilings discussed in
Chapter 2. The long unit is exactly τ times longer than the short one. We have
the following:

Theorem 5.5 [Pen89] For a correct tiling, the sequence of long and short units will
be a Fibonacci string, as defined in section 2.3.2.

Note that this simply means that a worm assembled according to a Fi-
bonacci string will constitute a correct tiling. A random sequence of long and
short worm units will create a patch of tiling that is merely legal. However,
it is the orientation of the worm in relation to the worms that intersect it that
will determine whether or not a tiling containing the correct worm will be
correct.

The theorem itself is easy to prove, one simply needs to note that the
matching rules correspond exactly with the hierarchical rules for generating
Fibonacci Sequences, as discussed in Chapter 2.

In fact, the simple mistake that we now know so well (Figure 5.69), corres-
ponds to the erroneous LLL in a Fibonacci sequence. That is, the mistake is
simply three long units together (Figure 5.70).

Because worms play such a central role in creating a correct Penrose tiling,
it would seem like a good strategy to develop the worms first, to create a
kind of framework for the rest of the tiling. However, recall from Chapter 3
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Figure 5.70: The simple mistake of Figure 5.69 corresponds to the erroneous LLL

sequence in a Fibonacci tiling.

that Fibonacci tilings admit deceptions of all orders, and hence the growth
of Fibonacci tilings is distinctly non-local. So attempting to solve this slightly
simpler case will lead nowhere.

5.5 Summary

In summary, we have seen that the differences between correct arrangements
of tiles manifest along worms. Inconsistencies in the tiling (overlaps, holes)
occur when worm orientations are incompatible. Mistakes may occur because
adding one tile may determine a worm orientation that is incompatible with
one of the existing worms (even if the existing worm only has one tile). When
adding tiles, one needs to be aware of tiles that are arbitrarily far away. In this
way, the growth of a correct Penrose tiling is a non-local process.
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Conclusions

In conclusion, we have seen that the growth of Penrose tilings is a funda-
mentally non-local process. Although we have algorithms that we can use to
generate these tilings, there is no local algorithm to create error-free tilings.

This is a particularly interesting statement in light of the fact that Pen-
rose tiles are used to model quasicrystal structure. The relationship between
Penrose tilings and quasicrystals is twofold. Firstly, the Penrose tilings were
chosen as a model for quasicrystals because they share many structural prop-
erties, namely fivefold rotational symmetry with no translational symmetry.
The second aspect is the use of Penrose tiles to attempt to understand the
growth of the quasicrystals. This raises the important question: if we are to
model quasicrystals on Penrose tilings, how does ‘nature’ know how to grow
them, if the local growth of Penrose tilings is impossible?

Consider the patch in Figure 6.1, thinking about the tiles as units of a qua-
sicrystal. When adding tiles to this patch, we may legally add either rhomb to

Figure 6.1: Attempting to grow a quasicrystal: we can add either rhomb to both sides
of this figure, but the situation that involves adding two thick rhombs is incorrect.
How does the mechanism governing the growth of a quasicrystal know this?
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both sides of this patch. Three of the four possible combinations will be cor-
rect, and as we have seen, the situation involving two thick rhombs is a mis-
take. From the perspective of quasicrystals, the mechanism that determines
how the crystal will grow must somehow keep track of what is happening
at both of these sites. Indeed, using the decomposition argument, this mech-
anism must contend with the potential for incompatible tile placements at
arbitrarily distant sites.

There have been some attempts to create algorithms using Penrose tiles
that would somehow model Quasicrystal growth. In [OSDS88], George On-
oda et. al. present an algorithm for growing defect-free Penrose tilings. This is
done, in short, by growing forced patches of tiles and then adding tiles around
the boundary of the patch in an ordered fashion. This algorithm, however, is
not local in the sense intended by Penrose, and this is documented in [Jar89].

Since then, algorithms using Penrose tilings to model Quasicrystal growth
have focused on growing defective tilings. See [OWD95] for an example of an
algorithm that accepts some violation of the matching rules. In some ways
these algorithms are more realistic, since the quasicrystals themselves often
contain inconsistencies.

Penrose himself suggests that if we are to base our understanding of qua-
sicrystal formation on these tilings, then we must face the fact that nature has
some interesting non-local tricks up her sleeve.
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Appendix A
Colophon

All of the illustrations in this document were created using the graphics pro-
gramming language PostScript. The newly published book by Bill Casselman,
Mathematical Illustrations [Cas05] was used as a reference for generating draw-
ings using PostScript.

Some of the figures were cropped and made ready for press using Adobe
Photoshop 7. Figures 3.7 and 3.11 were generated using the procedure for
tilings from Pentagrids as developed by Jürgen Richter-Gebert and Kajo Miy-
azaki and reprinted in Senechal’s book [Sen95].
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